ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.07982
  4. Cited By
Zero-shot Faithful Factual Error Correction

Zero-shot Faithful Factual Error Correction

13 May 2023
Kung-Hsiang Huang
Hou Pong Chan
Heng Ji
    KELM
    HILM
ArXivPDFHTML

Papers citing "Zero-shot Faithful Factual Error Correction"

19 / 19 papers shown
Title
ACCORD: Closing the Commonsense Measurability Gap
ACCORD: Closing the Commonsense Measurability Gap
François Roewer-Després
Jinyue Feng
Zining Zhu
Frank Rudzicz
LRM
68
0
0
04 Jun 2024
CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual
  Retrieval
CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval
Kung-Hsiang Huang
Chengxiang Zhai
Heng Ji
HILM
LRM
41
17
0
05 Sep 2022
FactPEGASUS: Factuality-Aware Pre-training and Fine-tuning for
  Abstractive Summarization
FactPEGASUS: Factuality-Aware Pre-training and Fine-tuning for Abstractive Summarization
David Wan
Joey Tianyi Zhou
HILM
34
69
0
16 May 2022
FactGraph: Evaluating Factuality in Summarization with Semantic Graph
  Representations
FactGraph: Evaluating Factuality in Summarization with Semantic Graph Representations
Leonardo F. R. Ribeiro
Mengwen Liu
Iryna Gurevych
Markus Dreyer
Mohit Bansal
HILM
36
59
0
13 Apr 2022
Generating Scientific Claims for Zero-Shot Scientific Fact Checking
Generating Scientific Claims for Zero-Shot Scientific Fact Checking
Dustin Wright
David Wadden
Kyle Lo
Bailey Kuehl
Arman Cohan
Isabelle Augenstein
Lucy Lu Wang
MedIm
69
56
0
24 Mar 2022
CONFIT: Toward Faithful Dialogue Summarization with
  Linguistically-Informed Contrastive Fine-tuning
CONFIT: Toward Faithful Dialogue Summarization with Linguistically-Informed Contrastive Fine-tuning
Xiangru Tang
Arjun Nair
Borui Wang
Bingyao Wang
Jai Desai
Aaron Wade
Haoran Li
Asli Celikyilmaz
Yashar Mehdad
Dragomir R. Radev
HILM
34
62
0
16 Dec 2021
SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in
  Summarization
SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization
Philippe Laban
Tobias Schnabel
Paul N. Bennett
Marti A. Hearst
HILM
65
387
0
18 Nov 2021
BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation
Weizhe Yuan
Graham Neubig
Pengfei Liu
79
829
0
22 Jun 2021
X-FACT: A New Benchmark Dataset for Multilingual Fact Checking
X-FACT: A New Benchmark Dataset for Multilingual Fact Checking
Ashim Gupta
Vivek Srikumar
HILM
50
99
0
17 Jun 2021
Zero-shot Fact Verification by Claim Generation
Zero-shot Fact Verification by Claim Generation
Liangming Pan
Wenhu Chen
Wenhan Xiong
Min-Yen Kan
Wenjie Wang
45
57
0
31 May 2021
Towards Question-Answering as an Automatic Metric for Evaluating the
  Content Quality of a Summary
Towards Question-Answering as an Automatic Metric for Evaluating the Content Quality of a Summary
Daniel Deutsch
Tania Bedrax-Weiss
Dan Roth
49
110
0
01 Oct 2020
UnifiedQA: Crossing Format Boundaries With a Single QA System
UnifiedQA: Crossing Format Boundaries With a Single QA System
Daniel Khashabi
Sewon Min
Tushar Khot
Ashish Sabharwal
Oyvind Tafjord
Peter Clark
Hannaneh Hajishirzi
105
731
0
02 May 2020
Fact or Fiction: Verifying Scientific Claims
Fact or Fiction: Verifying Scientific Claims
David Wadden
Shanchuan Lin
Kyle Lo
Lucy Lu Wang
Madeleine van Zuylen
Arman Cohan
Hannaneh Hajishirzi
HAI
82
440
0
30 Apr 2020
Evaluating the Factual Consistency of Abstractive Text Summarization
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
HILM
69
739
0
28 Oct 2019
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark
Kenton Lee
Ming-Wei Chang
Tom Kwiatkowski
Michael Collins
Kristina Toutanova
169
1,475
0
24 May 2019
FEVER: a large-scale dataset for Fact Extraction and VERification
FEVER: a large-scale dataset for Fact Extraction and VERification
James Thorne
Andreas Vlachos
Christos Christodoulopoulos
Arpit Mittal
HILM
107
1,633
0
14 Mar 2018
A Broad-Coverage Challenge Corpus for Sentence Understanding through
  Inference
A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
Adina Williams
Nikita Nangia
Samuel R. Bowman
395
4,444
0
18 Apr 2017
SQuAD: 100,000+ Questions for Machine Comprehension of Text
SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
RALM
149
8,067
0
16 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
577
16,828
0
16 Feb 2016
1