ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04962
  4. Cited By
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs

Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs

8 May 2023
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
ArXiv (abs)PDFHTML

Papers citing "Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs"

19 / 19 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
169
0
0
02 Mar 2025
Reduced Order Models and Conditional Expectation -- Analysing Parametric Low-Order Approximations
Reduced Order Models and Conditional Expectation -- Analysing Parametric Low-Order Approximations
Hermann G. Matthies
91
0
0
17 Feb 2025
Kernel Methods are Competitive for Operator Learning
Kernel Methods are Competitive for Operator Learning
Pau Batlle
Matthieu Darcy
Bamdad Hosseini
H. Owhadi
68
40
0
26 Apr 2023
Can Physics-Informed Neural Networks beat the Finite Element Method?
Can Physics-Informed Neural Networks beat the Finite Element Method?
T. G. Grossmann
Urszula Julia Komorowska
J. Latz
Carola-Bibiane Schönlieb
PINNAI4CE
91
91
0
08 Feb 2023
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
83
15
0
24 Feb 2022
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
97
19
0
22 Apr 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
69
156
0
24 Mar 2021
Solving high-dimensional parabolic PDEs using the tensor train format
Solving high-dimensional parabolic PDEs using the tensor train format
Lorenz Richter
Leon Sallandt
Nikolas Nusken
65
50
0
23 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,444
0
18 Oct 2020
A Survey of Constrained Gaussian Process Regression: Approaches and
  Implementation Challenges
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GPAI4CE
73
106
0
16 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
77
31
0
22 May 2020
Sparse Cholesky factorization by Kullback-Leibler minimization
Sparse Cholesky factorization by Kullback-Leibler minimization
Florian Schäfer
Matthias Katzfuss
H. Owhadi
75
94
0
29 Apr 2020
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,150
0
08 Oct 2019
Kernel Flows: from learning kernels from data into the abyss
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
73
90
0
13 Aug 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
131
1,097
0
01 Nov 2017
The Deep Ritz method: A deep learning-based numerical algorithm for
  solving variational problems
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,387
0
30 Sep 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
77
166
0
13 Feb 2017
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse
  Problems
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
AI4CE
62
80
0
15 Jan 2017
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
248
888
0
06 Nov 2015
1