Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.04962
Cited By
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
8 May 2023
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs"
19 / 19 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
169
0
0
02 Mar 2025
Reduced Order Models and Conditional Expectation -- Analysing Parametric Low-Order Approximations
Hermann G. Matthies
91
0
0
17 Feb 2025
Kernel Methods are Competitive for Operator Learning
Pau Batlle
Matthieu Darcy
Bamdad Hosseini
H. Owhadi
68
40
0
26 Apr 2023
Can Physics-Informed Neural Networks beat the Finite Element Method?
T. G. Grossmann
Urszula Julia Komorowska
J. Latz
Carola-Bibiane Schönlieb
PINN
AI4CE
91
91
0
08 Feb 2023
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
83
15
0
24 Feb 2022
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
97
19
0
22 Apr 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
69
156
0
24 Mar 2021
Solving high-dimensional parabolic PDEs using the tensor train format
Lorenz Richter
Leon Sallandt
Nikolas Nusken
65
50
0
23 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,444
0
18 Oct 2020
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GP
AI4CE
73
106
0
16 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
77
31
0
22 May 2020
Sparse Cholesky factorization by Kullback-Leibler minimization
Florian Schäfer
Matthias Katzfuss
H. Owhadi
75
94
0
29 Apr 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,150
0
08 Oct 2019
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
73
90
0
13 Aug 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
131
1,097
0
01 Nov 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,387
0
30 Sep 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
77
166
0
13 Feb 2017
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
AI4CE
62
80
0
15 Jan 2017
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
248
888
0
06 Nov 2015
1