ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.04887
  4. Cited By
Hardware Acceleration of Explainable Artificial Intelligence

Hardware Acceleration of Explainable Artificial Intelligence

4 May 2023
Zhixin Pan
Prabhat Mishra
ArXiv (abs)PDFHTML

Papers citing "Hardware Acceleration of Explainable Artificial Intelligence"

17 / 17 papers shown
Title
Gradient Backpropagation based Feature Attribution to Enable
  Explainable-AI on the Edge
Gradient Backpropagation based Feature Attribution to Enable Explainable-AI on the Edge
Ashwin Bhat
A. S. Assoa
A. Raychowdhury
48
9
0
19 Oct 2022
Model-Architecture Co-Design for High Performance Temporal GNN Inference
  on FPGA
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA
Hongkuan Zhou
Bingyi Zhang
Rajgopal Kannan
Viktor Prasanna
Carl E. Busart
GNN
63
23
0
10 Mar 2022
An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks
An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks
K. Seshadri
Berkin Akin
James Laudon
Ravi Narayanaswami
Amir Yazdanbakhsh
92
121
0
20 Feb 2021
GPUTreeShap: Massively Parallel Exact Calculation of SHAP Scores for
  Tree Ensembles
GPUTreeShap: Massively Parallel Exact Calculation of SHAP Scores for Tree Ensembles
Rory Mitchell
E. Frank
G. Holmes
45
57
0
27 Oct 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAMLXAI
109
379
0
30 Apr 2020
Understanding Integrated Gradients with SmoothTaylor for Deep Neural
  Network Attribution
Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution
Gary S. W. Goh
Sebastian Lapuschkin
Leander Weber
Wojciech Samek
Alexander Binder
FAtt
71
35
0
22 Apr 2020
Large-Scale Discrete Fourier Transform on TPUs
Large-Scale Discrete Fourier Transform on TPUs
Tianjian Lu
Yi-Fan Chen
Blake A. Hechtman
Tao Wang
John R. Anderson
73
33
0
09 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
What does a network layer hear? Analyzing hidden representations of
  end-to-end ASR through speech synthesis
What does a network layer hear? Analyzing hidden representations of end-to-end ASR through speech synthesis
Chung-Yi Li
Pei-Chieh Yuan
Hung-yi Lee
54
31
0
04 Nov 2019
High Performance Monte Carlo Simulation of Ising Model on TPU Clusters
High Performance Monte Carlo Simulation of Ising Model on TPU Clusters
Kun Yang
Yi-Fan Chen
George Roumpos
Christopher Colby
John R. Anderson
81
51
0
27 Mar 2019
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAttODL
210
2,236
0
12 Jun 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
239
4,648
0
16 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,027
0
04 Mar 2017
Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV) :
  IoT Botnets
Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV) : IoT Botnets
K. Angrishi
24
237
0
13 Feb 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
323
7,321
0
20 Dec 2013
1