ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02297
  4. Cited By
Making the Most of What You Have: Adapting Pre-trained Visual Language
  Models in the Low-data Regime

Making the Most of What You Have: Adapting Pre-trained Visual Language Models in the Low-data Regime

3 May 2023
Chuhan Zhang
Antoine Miech
Jiajun Shen
Jean-Baptiste Alayrac
Pauline Luc
    VLM
    VPVLM
ArXivPDFHTML

Papers citing "Making the Most of What You Have: Adapting Pre-trained Visual Language Models in the Low-data Regime"

13 / 13 papers shown
Title
Is user feedback always informative? Retrieval Latent Defending for
  Semi-Supervised Domain Adaptation without Source Data
Is user feedback always informative? Retrieval Latent Defending for Semi-Supervised Domain Adaptation without Source Data
Junha Song
Tae Soo Kim
Junha Kim
Gunhee Nam
Thijs Kooi
Jaegul Choo
50
1
0
22 Jul 2024
BLIP: Bootstrapping Language-Image Pre-training for Unified
  Vision-Language Understanding and Generation
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
Guosheng Lin
MLLM
BDL
VLM
CLIP
392
4,154
0
28 Jan 2022
MURAL: Multimodal, Multitask Retrieval Across Languages
MURAL: Multimodal, Multitask Retrieval Across Languages
Aashi Jain
Mandy Guo
Krishna Srinivasan
Ting-Li Chen
Sneha Kudugunta
Chao Jia
Yinfei Yang
Jason Baldridge
VLM
115
52
0
10 Sep 2021
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Zhengyuan Yang
Zhe Gan
Jianfeng Wang
Xiaowei Hu
Yumao Lu
Zicheng Liu
Lijuan Wang
180
402
0
10 Sep 2021
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
348
2,271
0
02 Sep 2021
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip
  Retrieval
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval
Huaishao Luo
Lei Ji
Ming Zhong
Yang Chen
Wen Lei
Nan Duan
Tianrui Li
CLIP
VLM
326
781
0
18 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,858
0
18 Apr 2021
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize
  Long-Tail Visual Concepts
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts
Soravit Changpinyo
P. Sharma
Nan Ding
Radu Soricut
VLM
296
1,084
0
17 Feb 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
322
3,708
0
11 Feb 2021
Unifying Vision-and-Language Tasks via Text Generation
Unifying Vision-and-Language Tasks via Text Generation
Jaemin Cho
Jie Lei
Hao Tan
Joey Tianyi Zhou
MLLM
274
525
0
04 Feb 2021
Decoupling the Role of Data, Attention, and Losses in Multimodal
  Transformers
Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers
Lisa Anne Hendricks
John F. J. Mellor
R. Schneider
Jean-Baptiste Alayrac
Aida Nematzadeh
79
110
0
31 Jan 2021
Meta Pseudo Labels
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
262
656
0
23 Mar 2020
Revisiting Self-Training for Neural Sequence Generation
Revisiting Self-Training for Neural Sequence Generation
Junxian He
Jiatao Gu
Jiajun Shen
MarcÁurelio Ranzato
SSL
LRM
244
269
0
30 Sep 2019
1