ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.01610
  4. Cited By
Finding Neurons in a Haystack: Case Studies with Sparse Probing
v1v2 (latest)

Finding Neurons in a Haystack: Case Studies with Sparse Probing

2 May 2023
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
    MILM
ArXiv (abs)PDFHTML

Papers citing "Finding Neurons in a Haystack: Case Studies with Sparse Probing"

10 / 60 papers shown
Title
What you can cram into a single vector: Probing sentence embeddings for
  linguistic properties
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
345
894
0
03 May 2018
Understanding Neural Networks and Individual Neuron Importance via
  Information-Ordered Cumulative Ablation
Understanding Neural Networks and Individual Neuron Importance via Information-Ordered Cumulative Ablation
Rana Ali Amjad
Kairen Liu
Bernhard C. Geiger
FAtt
61
20
0
18 Apr 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
62
1,350
0
16 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
217
1,842
0
30 Nov 2017
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
413
10,494
0
21 Jul 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Sanjeev Arora
Yuanzhi Li
Yingyu Liang
Tengyu Ma
Andrej Risteski
83
283
0
14 Jan 2016
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLMObjD
186
4,950
0
06 Oct 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
269
12,439
0
24 Jun 2012
Previous
12