ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.00723
  4. Cited By
Predictions Based on Pixel Data: Insights from PDEs and Finite
  Differences
v1v2 (latest)

Predictions Based on Pixel Data: Insights from PDEs and Finite Differences

1 May 2023
E. Celledoni
James Jackaman
Davide Murari
B. Owren
ArXiv (abs)PDFHTML

Papers citing "Predictions Based on Pixel Data: Insights from PDEs and Finite Differences"

39 / 39 papers shown
Title
Designing Stable Neural Networks using Convex Analysis and ODEs
Designing Stable Neural Networks using Convex Analysis and ODEs
Ferdia Sherry
E. Celledoni
Matthias Joachim Ehrhardt
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
91
12
0
29 Jun 2023
Learning Hamiltonians of constrained mechanical systems
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
116
18
0
31 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
119
1,273
0
14 Jan 2022
Hamiltonian latent operators for content and motion disentanglement in
  image sequences
Hamiltonian latent operators for content and motion disentanglement in image sequences
Asif Khan
Amos Storkey
56
2
0
02 Dec 2021
A Dynamical System Perspective for Lipschitz Neural Networks
A Dynamical System Perspective for Lipschitz Neural Networks
Laurent Meunier
Blaise Delattre
Alexandre Araujo
A. Allauzen
109
56
0
25 Oct 2021
Locally-symplectic neural networks for learning volume-preserving
  dynamics
Locally-symplectic neural networks for learning volume-preserving dynamics
J. Bajārs
60
11
0
19 Sep 2021
Primer: Searching for Efficient Transformers for Language Modeling
Primer: Searching for Efficient Transformers for Language Modeling
David R. So
Wojciech Mañke
Hanxiao Liu
Zihang Dai
Noam M. Shazeer
Quoc V. Le
VLM
264
156
0
17 Sep 2021
PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by
  Partial Differential Equations
PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by Partial Differential Equations
Moshe Eliasof
E. Haber
Eran Treister
GNNAI4CE
97
131
0
04 Aug 2021
Effects of boundary conditions in fully convolutional networks for
  learning spatio-temporal dynamics
Effects of boundary conditions in fully convolutional networks for learning spatio-temporal dynamics
Antonio Alguacil andr Gonccalves Pinto
Wagner Gonçalves Pinto
Michaël Bauerheim
Marc C. Jacob
S. Moreau
AI4CE
78
19
0
21 Jun 2021
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
  Learning
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning
Yunbo Wang
Haixu Wu
Jianjin Zhang
Zhifeng Gao
Jianmin Wang
Philip S. Yu
Mingsheng Long
116
394
0
17 Mar 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
118
420
0
24 Feb 2021
Curriculum Learning: A Survey
Curriculum Learning: A Survey
Petru Soviany
Radu Tudor Ionescu
Paolo Rota
N. Sebe
ODL
169
360
0
25 Jan 2021
LagNetViP: A Lagrangian Neural Network for Video Prediction
LagNetViP: A Lagrangian Neural Network for Video Prediction
Christine Allen-Blanchette
Sushant Veer
Anirudha Majumdar
Naomi Ehrich Leonard
87
31
0
24 Oct 2020
A generative adversarial network approach to (ensemble) weather
  prediction
A generative adversarial network approach to (ensemble) weather prediction
Alexander Bihlo
AI4Cl
55
80
0
13 Jun 2020
Structure preserving deep learning
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
104
44
0
05 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
889
42,463
0
28 May 2020
A Review on Deep Learning Techniques for Video Prediction
A Review on Deep Learning Techniques for Video Prediction
Sergiu Oprea
P. Martinez-Gonzalez
Alberto Garcia-Garcia
John Alejandro Castro-Vargas
S. Orts-Escolano
Jose Garcia-Rodriguez
Antonis Argyros
97
256
0
10 Apr 2020
Comparing recurrent and convolutional neural networks for predicting
  wave propagation
Comparing recurrent and convolutional neural networks for predicting wave propagation
Stathi Fotiadis
E. Pignatelli
Mario Lino Valencia
C. Cantwell
Amos Storkey
Anil A. Bharath
66
37
0
20 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved
  Generalization
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin Walters
Rose Yu
AI4CE
130
177
0
08 Feb 2020
PDE-based Group Equivariant Convolutional Neural Networks
PDE-based Group Equivariant Convolutional Neural Networks
B. Smets
J. Portegies
Erik J. Bekkers
R. Duits
AI4CE
91
54
0
24 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
556
42,639
0
03 Dec 2019
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINNAI4CE
60
371
0
20 Nov 2019
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
DL-PDE: Deep-learning based data-driven discovery of partial
  differential equations from discrete and noisy data
DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
57
70
0
13 Aug 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
130
899
0
04 Jun 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep
  Network
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
83
553
0
30 Nov 2018
Learning Dexterous In-Hand Manipulation
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
166
1,884
0
01 Aug 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
448
5,168
0
19 Jun 2018
Multi-Step Prediction of Dynamic Systems with Recurrent Neural Networks
Multi-Step Prediction of Dynamic Systems with Recurrent Neural Networks
Nima Mohajerin
Steven L. Waslander
AI4CE
86
91
0
20 May 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
172
481
0
12 Apr 2018
Deep Neural Networks Motivated by Partial Differential Equations
Deep Neural Networks Motivated by Partial Differential Equations
Lars Ruthotto
E. Haber
AI4CE
137
492
0
12 Apr 2018
Stable Architectures for Deep Neural Networks
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
154
735
0
09 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,564
0
31 Mar 2017
Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
Guo-Jun Qi
GAN
82
349
0
23 Jan 2017
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
  with $ \ell^1 $ and $ \ell^0 $ Controls
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with ℓ1 \ell^1 ℓ1 and ℓ0 \ell^0 ℓ0 Controls
Jason M. Klusowski
Andrew R. Barron
279
143
0
26 Jul 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
176
1,946
0
24 Feb 2016
Deep multi-scale video prediction beyond mean square error
Deep multi-scale video prediction beyond mean square error
Michaël Mathieu
Camille Couprie
Yann LeCun
GAN
130
1,882
0
17 Nov 2015
Cyclical Learning Rates for Training Neural Networks
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
233
2,540
0
03 Jun 2015
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
1