Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.14374
Cited By
Pseudo-Hamiltonian neural networks for learning partial differential equations
27 April 2023
Sølve Eidnes
K. Lye
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pseudo-Hamiltonian neural networks for learning partial differential equations"
11 / 11 papers shown
Title
Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs
Yusuke Tanaka
Takaharu Yaguchi
Tomoharu Iwata
N. Ueda
AI4CE
42
0
0
14 Feb 2024
Data-Driven Discovery of PDEs via the Adjoint Method
Mohsen Sadr
Tony Tohme
Kamal Youcef-Toumi
PINN
27
1
0
30 Jan 2024
Hierarchical deep learning-based adaptive time-stepping scheme for multiscale simulations
Asif Hamid
Danish Rafiq
S. A. Nahvi
M. A. Bazaz
AI4CE
39
1
0
10 Nov 2023
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Predictions Based on Pixel Data: Insights from PDEs and Finite Differences
E. Celledoni
James Jackaman
Davide Murari
B. Owren
33
1
0
01 May 2023
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
44
17
0
31 Jan 2022
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
220
2,287
0
18 Oct 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
91
387
0
10 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
133
424
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
149
220
0
29 Sep 2019
1