ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.13117
  4. Cited By
When to be Discrete: Analyzing Algorithm Performance on Discretized
  Continuous Problems

When to be Discrete: Analyzing Algorithm Performance on Discretized Continuous Problems

25 April 2023
André Thomaser
Jacob De Nobel
Diederick Vermetten
Furong Ye
Thomas Bäck
Anna V. Kononova
ArXivPDFHTML

Papers citing "When to be Discrete: Analyzing Algorithm Performance on Discretized Continuous Problems"

5 / 5 papers shown
Title
CMA-ES with Margin: Lower-Bounding Marginal Probability for
  Mixed-Integer Black-Box Optimization
CMA-ES with Margin: Lower-Bounding Marginal Probability for Mixed-Integer Black-Box Optimization
Ryoki Hamano
Shota Saito
Masahiro Nomura
Shinichi Shirakawa
28
35
0
26 May 2022
IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
  Heuristics
IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics
Hongya Wang
Diederick Vermetten
Furong Ye
Carola Doerr
Thomas Bäck
94
48
0
08 Jul 2020
Benchmarking in Optimization: Best Practice and Open Issues
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
87
112
0
07 Jul 2020
The CMA Evolution Strategy: A Tutorial
The CMA Evolution Strategy: A Tutorial
N. Hansen
69
1,372
0
04 Apr 2016
CMA-ES with Two-Point Step-Size Adaptation
CMA-ES with Two-Point Step-Size Adaptation
Nikolaus Hansen
114
575
0
02 May 2008
1