ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.12768
  4. Cited By
Towards Characterizing the First-order Query Complexity of Learning
  (Approximate) Nash Equilibria in Zero-sum Matrix Games

Towards Characterizing the First-order Query Complexity of Learning (Approximate) Nash Equilibria in Zero-sum Matrix Games

25 April 2023
Hédi Hadiji
Sarah Sachs
T. Erven
Wouter M. Koolen
ArXivPDFHTML

Papers citing "Towards Characterizing the First-order Query Complexity of Learning (Approximate) Nash Equilibria in Zero-sum Matrix Games"

2 / 2 papers shown
Title
Computational Lower Bounds for Regret Minimization in Normal-Form Games
Computational Lower Bounds for Regret Minimization in Normal-Form Games
Ioannis Anagnostides
Alkis Kalavasis
T. Sandholm
34
0
0
04 Nov 2024
Frank-Wolfe Algorithms for Saddle Point Problems
Frank-Wolfe Algorithms for Saddle Point Problems
Gauthier Gidel
Tony Jebara
Simon Lacoste-Julien
42
70
0
25 Oct 2016
1