ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.11788
  4. Cited By
Can Decentralized Stochastic Minimax Optimization Algorithms Converge
  Linearly for Finite-Sum Nonconvex-Nonconcave Problems?

Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems?

24 April 2023
Yihan Zhang
Wenhao Jiang
Feng-Song Zheng
C. C. Tan
Xinghua Shi
Hongchang Gao
ArXivPDFHTML

Papers citing "Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems?"

1 / 1 papers shown
Title
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
1