ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10817
  4. Cited By
Can SAM Count Anything? An Empirical Study on SAM Counting

Can SAM Count Anything? An Empirical Study on SAM Counting

21 April 2023
Zhiheng Ma
Xiaopeng Hong
Qinnan Shangguan
    VLM
ArXivPDFHTML

Papers citing "Can SAM Count Anything? An Empirical Study on SAM Counting"

13 / 13 papers shown
Title
RobustSAM: Segment Anything Robustly on Degraded Images
RobustSAM: Segment Anything Robustly on Degraded Images
Wei-Ting Chen
Yu-Jiet Vong
Sy-Yen Kuo
Sizhuo Ma
Jian Wang
VLM
51
10
0
13 Jun 2024
A Simple-but-effective Baseline for Training-free Class-Agnostic Counting
A Simple-but-effective Baseline for Training-free Class-Agnostic Counting
Yuhao Lin
Hai-Ming Xu
Lingqiao Liu
Javen Qinfeng Shi
31
1
0
03 Mar 2024
Point, Segment and Count: A Generalized Framework for Object Counting
Point, Segment and Count: A Generalized Framework for Object Counting
Zhizhong Huang
Mingliang Dai
Yi Zhang
Junping Zhang
Hongming Shan
49
18
0
21 Nov 2023
Open-NeRF: Towards Open Vocabulary NeRF Decomposition
Open-NeRF: Towards Open Vocabulary NeRF Decomposition
Hao Zhang
Fang Li
Narendra Ahuja
35
12
0
25 Oct 2023
ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class
  Class-agnostic Counting
ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class Class-agnostic Counting
Michael A. Hobley
V. Prisacariu
11
3
0
09 Sep 2023
Industrial Segment Anything -- a Case Study in Aircraft Manufacturing,
  Intralogistics, Maintenance, Repair, and Overhaul
Industrial Segment Anything -- a Case Study in Aircraft Manufacturing, Intralogistics, Maintenance, Repair, and Overhaul
Keno Moenck
Arne Wendt
Philipp Prünte
Julian Koch
Arne Sahrhage
...
Falko Kähler
Dirk Holst
Martin Gomse
Thorsten Schuppstuhl
Daniel Schoepflin
VLM
38
6
0
24 Jul 2023
Review of Large Vision Models and Visual Prompt Engineering
Review of Large Vision Models and Visual Prompt Engineering
Jiaqi Wang
Zheng Liu
Lin Zhao
Zihao Wu
Chong Ma
...
Bao Ge
Yixuan Yuan
Dinggang Shen
Tianming Liu
Shu Zhang
VLM
LRM
55
147
0
03 Jul 2023
On the Robustness of Segment Anything
On the Robustness of Segment Anything
Yihao Huang
Yue Cao
Tianlin Li
Felix Juefei Xu
Di Lin
Ivor W.Tsang
Yang Liu
Qing Guo
AAML
VLM
37
27
0
25 May 2023
A Comprehensive Survey on Segment Anything Model for Vision and Beyond
A Comprehensive Survey on Segment Anything Model for Vision and Beyond
Chunhui Zhang
Li Liu
Yawen Cui
Guanjie Huang
Weilin Lin
Yiqian Yang
Yuehong Hu
VLM
48
90
0
14 May 2023
A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets
  Prompt Engineering
A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
Chaoning Zhang
Fachrina Dewi Puspitasari
Sheng Zheng
Chenghao Li
Yu Qiao
...
Caiyan Qin
François Rameau
Lik-Hang Lee
Sung-Ho Bae
Choong Seon Hong
VLM
84
63
0
12 May 2023
SAM on Medical Images: A Comprehensive Study on Three Prompt Modes
SAM on Medical Images: A Comprehensive Study on Three Prompt Modes
D. Cheng
Ziyuan Qin
Zekun Jiang
Shaoting Zhang
Qicheng Lao
Kang Li
MedIm
VLM
27
103
0
28 Apr 2023
Few-shot Object Counting with Similarity-Aware Feature Enhancement
Few-shot Object Counting with Similarity-Aware Feature Enhancement
Zhiyuan You
Kai Yang
Wenhan Luo
X. Lu
Lei Cui
Xinyi Le
44
67
0
22 Jan 2022
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
490
11,727
0
09 Mar 2017
1