Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.09876
Cited By
Model Pruning Enables Localized and Efficient Federated Learning for Yield Forecasting and Data Sharing
19 April 2023
An-dong Li
Milan Markovic
P. Edwards
Georgios Leontidis
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model Pruning Enables Localized and Efficient Federated Learning for Yield Forecasting and Data Sharing"
6 / 6 papers shown
Title
Enhancing Strawberry Yield Forecasting with Backcasted IoT Sensor Data and Machine Learning
Tewodros Alemu Ayall
Andy Li
Matthew Beddows
Milan Markovic
Georgios Leontidis
31
0
0
25 Apr 2025
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
147
674
0
24 Jan 2021
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
243
1,452
0
18 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
760
0
28 Sep 2019
1