ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08662
  4. Cited By
Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on
  the Graphcore IPU

Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU

17 April 2023
Luk Burchard
Max Zhao
J. Langguth
A. Buluç
Giulia Guidi
ArXivPDFHTML

Papers citing "Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU"

1 / 1 papers shown
Title
AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs
AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs
André Müller
B. Schmidt
Richard Membarth
Roland Leißa
Sebastian Hack
22
10
0
16 May 2022
1