ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08380
  4. Cited By
Physics-inspired Neuroacoustic Computing Based on Tunable Nonlinear
  Multiple-scattering

Physics-inspired Neuroacoustic Computing Based on Tunable Nonlinear Multiple-scattering

17 April 2023
Ali Momeni
Xinxin Guo
Hervé Lissek
Romain Fleury
ArXivPDFHTML

Papers citing "Physics-inspired Neuroacoustic Computing Based on Tunable Nonlinear Multiple-scattering"

4 / 4 papers shown
Title
Backpropagation-free Training of Deep Physical Neural Networks
Backpropagation-free Training of Deep Physical Neural Networks
Ali Momeni
Babak Rahmani
M. Malléjac
Philipp del Hougne
Romain Fleury
AI4CE
PINN
32
54
0
20 Apr 2023
An optical neural network using less than 1 photon per multiplication
An optical neural network using less than 1 photon per multiplication
Tianyu Wang
Shifan Ma
Logan G. Wright
Tatsuhiro Onodera
Brian C. Richard
Peter L. McMahon
48
177
0
27 Apr 2021
Deep physical neural networks enabled by a backpropagation algorithm for
  arbitrary physical systems
Deep physical neural networks enabled by a backpropagation algorithm for arbitrary physical systems
Logan G. Wright
Tatsuhiro Onodera
Martin M. Stein
Tianyu Wang
Darren T. Schachter
Zoey Hu
Peter L. McMahon
PINN
AI4CE
42
469
0
27 Apr 2021
All-Optical Machine Learning Using Diffractive Deep Neural Networks
All-Optical Machine Learning Using Diffractive Deep Neural Networks
Xing Lin
Y. Rivenson
N. Yardimci
Muhammed Veli
Mona Jarrahi
Aydogan Ozcan
76
1,628
0
14 Apr 2018
1