Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.08309
Cited By
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
17 April 2023
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization"
11 / 11 papers shown
Title
One Set to Rule Them All: How to Obtain General Chemical Conditions via Bayesian Optimization over Curried Functions
Stefan P. Schmid
Ella M. Rajaonson
C. Ser
Mohammad Haddadnia
Shi Xuan Leong
Alán Aspuru-Guzik
Agustinus Kristiadi
Kjell Jorner
Felix Strieth-Kalthoff
82
0
0
26 Feb 2025
Uncertainty-Guided Optimization on Large Language Model Search Trees
Julia Grosse
Ruotian Wu
Ahmad Rashid
Philipp Hennig
Pascal Poupart
Agustinus Kristiadi
37
1
0
04 Jul 2024
How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Sriram Ganapathi Subramanian
Vincent Fortuin
Pascal Poupart
Geoff Pleiss
44
2
0
10 Jun 2024
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
30
21
0
07 Feb 2024
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
33
0
0
29 Sep 2023
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Y. Li
Tim G. J. Rudner
A. Wilson
BDL
26
28
0
31 May 2023
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
21
12
0
20 May 2022
Probing as Quantifying Inductive Bias
Alexander Immer
Lucas Torroba Hennigen
Vincent Fortuin
Ryan Cotterell
48
14
0
15 Oct 2021
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1