ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.05502
  4. Cited By
Machine learning for structure-property relationships: Scalability and
  limitations

Machine learning for structure-property relationships: Scalability and limitations

11 April 2023
Zhongzheng Tian
Sheng Zhang
Gia-Wei Chern
ArXivPDFHTML

Papers citing "Machine learning for structure-property relationships: Scalability and limitations"

1 / 1 papers shown
Title
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
256
1,244
0
08 Jan 2021
1