Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.04120
Cited By
Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural Network Pruning
8 April 2023
Shangli Zhou
Mikhail A. Bragin
Lynn Pepin
Deniz Gurevin
Fei Miao
Caiwen Ding
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural Network Pruning"
3 / 3 papers shown
Title
Survey on Lagrangian Relaxation for MILP: Importance, Challenges, Historical Review, Recent Advancements, and Opportunities
Mikhail A. Bragin
14
11
0
02 Jan 2023
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
280
2,606
0
04 May 2021
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression
Yawei Li
Shuhang Gu
Christoph Mayer
Luc Van Gool
Radu Timofte
137
189
0
19 Mar 2020
1