ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.02221
  4. Cited By
Zero-shot domain adaptation of anomalous samples for semi-supervised
  anomaly detection

Zero-shot domain adaptation of anomalous samples for semi-supervised anomaly detection

5 April 2023
Tomoya Nishida
Takashi Endo
Y. Kawaguchi
ArXivPDFHTML

Papers citing "Zero-shot domain adaptation of anomalous samples for semi-supervised anomaly detection"

2 / 2 papers shown
Title
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
  Detection
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection
Yingjie Zhou
Xuchen Song
Yanru Zhang
Fanxing Liu
Ce Zhu
Lingqiao Liu
UQCV
31
102
0
22 May 2021
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
179
9,342
0
28 May 2015
1