Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.02146
Cited By
Structure Learning with Continuous Optimization: A Sober Look and Beyond
4 April 2023
Ignavier Ng
Erdun Gao
Kun Zhang
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Structure Learning with Continuous Optimization: A Sober Look and Beyond"
47 / 47 papers shown
Title
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
79
1
0
21 Mar 2025
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
Yuxing Huang
Wenqin Liu
Haoran Deng
Ignavier Ng
Kun Zhang
Biwei Huang
Yi-An Ma
Zhen Zhang
68
1
0
08 Oct 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
81
7
0
02 Feb 2024
Causal-learn: Causal Discovery in Python
Yujia Zheng
Erdun Gao
Wei Chen
Joseph Ramsey
Biwei Huang
Ruichu Cai
Shohei Shimizu
Peter Spirtes
Kun Zhang
CML
61
69
0
31 Jul 2023
Global Optimality in Bivariate Gradient-based DAG Learning
Chang Deng
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
54
8
0
30 Jun 2023
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
91
83
0
16 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Biwei Huang
CML
57
4
0
07 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Biwei Huang
Kun Zhang
Javen Qinfeng Shi
49
25
0
30 Aug 2022
NeurIPS Competition Instructions and Guide: Causal Insights for Learning Paths in Education
Wenbo Gong
Digory Smith
Zichao Wang
Craig Barton
Simon Woodhead
Nick Pawlowski
Joel Jennings
Cheng Zhang
CML
41
4
0
17 Aug 2022
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
Erdun Gao
Ignavier Ng
Biwei Huang
Li Shen
Wei Huang
Tongliang Liu
Kun Zhang
H. Bondell
CML
105
23
0
27 May 2022
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
68
42
0
16 Mar 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
67
23
0
04 Mar 2022
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
62
17
0
07 Dec 2021
Multi-task Learning of Order-Consistent Causal Graphs
Xinshi Chen
Haoran Sun
Caleb N. Ellington
Eric Xing
Le Song
CML
49
15
0
03 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
59
38
0
18 Oct 2021
DAGs with No Curl: An Efficient DAG Structure Learning Approach
Yue Yu
Tian Gao
Naiyu Yin
Q. Ji
CML
49
60
0
14 Jun 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
79
65
0
12 Apr 2021
Deconfounded Score Method: Scoring DAGs with Dense Unobserved Confounding
Alexis Bellot
M. Schaar
CML
29
11
0
28 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
89
300
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
56
141
0
26 Feb 2021
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
68
38
0
23 Nov 2020
Learning causal representations for robust domain adaptation
shuai Yang
Kui Yu
Fuyuan Cao
Lin Liu
Hongya Wang
Jiuyong Li
OOD
CML
TTA
44
44
0
12 Nov 2020
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
72
71
0
18 Oct 2020
Differentiable Causal Discovery Under Unmeasured Confounding
Rohit Bhattacharya
Tushar Nagarajan
Daniel Malinsky
I. Shpitser
CML
58
60
0
14 Oct 2020
Causal Discovery with Multi-Domain LiNGAM for Latent Factors
Yan Zeng
Shohei Shimizu
Ruichu Cai
Feng Xie
Michio Yamamoto
Zhifeng Hao
CML
46
21
0
19 Sep 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
56
186
0
03 Jul 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
50
189
0
17 Jun 2020
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
64
191
0
02 Feb 2020
Causal Discovery from Incomplete Data: A Deep Learning Approach
Yuhao Wang
Vlado Menkovski
Hao Wang
Xin Du
Mykola Pechenizkiy
CML
53
34
0
15 Jan 2020
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
100
117
0
18 Oct 2019
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
150
260
0
29 Sep 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
50
273
0
05 Jun 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
67
485
0
22 Apr 2019
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement
W. Kool
H. V. Hoof
Max Welling
109
220
0
14 Mar 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
49
94
0
13 Mar 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
79
937
0
04 Mar 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
72
270
0
23 Feb 2018
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Support recovery without incoherence: A case for nonconvex regularization
Po-Ling Loh
Martin J. Wainwright
149
169
0
17 Dec 2014
High-dimensional learning of linear causal networks via inverse covariance estimation
Po-Ling Loh
Peter Buhlmann
CML
95
189
0
14 Nov 2013
Large-Sample Learning of Bayesian Networks is NP-Hard
D. M. Chickering
Christopher Meek
David Heckerman
BDL
111
793
0
19 Oct 2012
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
167
336
0
11 May 2012
Bayesian network learning with cutting planes
James Cussens
56
257
0
14 Feb 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
97
510
0
13 Jan 2011
Nearly unbiased variable selection under minimax concave penalty
Cun-Hui Zhang
311
3,557
0
25 Feb 2010
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
229
874
0
21 Nov 2008
Statistical ranking and combinatorial Hodge theory
Xiaoye Jiang
Lek-Heng Lim
Yuan Yao
Yinyu Ye
77
372
0
07 Nov 2008
1