ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.01963
  4. Cited By
Model-corrected learned primal-dual models for fast limited-view
  photoacoustic tomography

Model-corrected learned primal-dual models for fast limited-view photoacoustic tomography

4 April 2023
A. Hauptmann
Jenni Poimala
    MedIm
ArXiv (abs)PDFHTML

Papers citing "Model-corrected learned primal-dual models for fast limited-view photoacoustic tomography"

15 / 15 papers shown
Title
Deep network series for large-scale high-dynamic range imaging
Deep network series for large-scale high-dynamic range imaging
Amir Aghabiglou
Matthieu Terris
A. Jackson
Yves Wiaux
AI4TS
75
4
0
28 Oct 2022
Learned reconstruction methods with convergence guarantees
Learned reconstruction methods with convergence guarantees
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
85
51
0
11 Jun 2022
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
67
112
0
08 Mar 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
78
181
0
16 Feb 2021
Deep learning for biomedical photoacoustic imaging: A review
Deep learning for biomedical photoacoustic imaging: A review
J. Gröhl
Melanie Schellenberg
Kris K. Dreher
Lena Maier-Hein
116
194
0
05 Nov 2020
Deep Learning in Photoacoustic Tomography: Current approaches and future
  directions
Deep Learning in Photoacoustic Tomography: Current approaches and future directions
A. Hauptmann
B. Cox
118
130
0
16 Sep 2020
Plug-and-Play Image Restoration with Deep Denoiser Prior
Plug-and-Play Image Restoration with Deep Denoiser Prior
Peng Sun
Yawei Li
W. Zuo
Lei Zhang
Luc Van Gool
Radu Timofte
DiffMSupR
101
807
0
31 Aug 2020
Learned convex regularizers for inverse problems
Learned convex regularizers for inverse problems
Subhadip Mukherjee
Sören Dittmer
Zakhar Shumaylov
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
72
80
0
06 Aug 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
102
1,022
0
22 Dec 2019
i-RIM applied to the fastMRI challenge
i-RIM applied to the fastMRI challenge
P. Putzky
D. Karkalousos
Jonas Teuwen
Nikita Miriakov
Bart Bakker
M. Caan
Max Welling
62
39
0
20 Oct 2019
Multi-Scale Learned Iterative Reconstruction
Multi-Scale Learned Iterative Reconstruction
A. Hauptmann
J. Adler
Simon Arridge
Ozan Oktem
70
37
0
01 Aug 2019
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Ernest K. Ryu
Jialin Liu
Sicheng Wang
Xiaohan Chen
Zhangyang Wang
W. Yin
AI4CE
66
354
0
14 May 2019
Model based learning for accelerated, limited-view 3D photoacoustic
  tomography
Model based learning for accelerated, limited-view 3D photoacoustic tomography
A. Hauptmann
F. Lucka
M. Betcke
N. Huynh
J. Adler
B. Cox
P. Beard
Sebastien Ourselin
Simon Arridge
MedIm
43
291
0
31 Aug 2017
Learned Primal-dual Reconstruction
Learned Primal-dual Reconstruction
J. Adler
Ozan Oktem
MedIm
65
753
0
20 Jul 2017
Learning a Variational Network for Reconstruction of Accelerated MRI
  Data
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
77
1,544
0
03 Apr 2017
1