Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.01300
Cited By
On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach
3 April 2023
Mohit Kumar
Bernhard A. Moser
Lukas Fischer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach"
6 / 6 papers shown
Title
The Deep Kernelized Autoencoder
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
Robert Jenssen
L. Livi
36
18
0
19 Jul 2018
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
Borja Balle
Yu Wang
MLT
66
403
0
16 May 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
57
418
0
05 Feb 2018
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
63
196
0
31 May 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
191
6,109
0
01 Jul 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
228
885
0
06 Nov 2015
1