Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.00062
Cited By
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
31 March 2023
Robert Ferrando
Laurent Pagnier
R. Mieth
Zhirui Liang
Y. Dvorkin
D. Bienstock
Michael Chertkov
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study"
9 / 9 papers shown
Title
Machine Learning for Electricity Market Clearing
Laurent Pagnier
Robert Ferrando
Y. Dvorkin
Michael Chertkov
55
1
0
23 May 2022
Learning Optimization Proxies for Large-Scale Security-Constrained Economic Dispatch
Wenbo Chen
Seonho Park
Mathieu Tanneau
Pascal Van Hentenryck
56
45
0
27 Dec 2021
Physics-Informed Neural Networks for AC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
119
91
0
06 Oct 2021
Leveraging power grid topology in machine learning assisted optimal power flow
Thomas Falconer
Letif Mones
32
49
0
01 Oct 2021
Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
56
33
0
28 Jun 2021
Graph Neural Networks for Learning Real-Time Prices in Electricity Market
Shaohui Liu
Chengyang Wu
Hao Zhu
50
10
0
19 Jun 2021
Data-driven Optimal Power Flow: A Physics-Informed Machine Learning Approach
Xingyu Lei
Zhifang Yang
Juan Yu
Junbo Zhao
Qian Gao
Hongxin Yu
35
106
0
31 May 2020
Fashionable Modelling with Flux
Mike Innes
Elliot Saba
Keno Fischer
Dhairya Gandhi
Marco Concetto Rudilosso
Neethu Mariya Joy
Tejan Karmali
Avik Pal
Viral B. Shah
AI4CE
88
164
0
01 Nov 2018
Supervised Learning for Optimal Power Flow as a Real-Time Proxy
Raphaël Canyasse
Gal Dalal
Shie Mannor
46
39
0
20 Dec 2016
1