Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.15127
Cited By
Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks
27 March 2023
Tianrui Qin
Xitong Gao
Juanjuan Zhao
Kejiang Ye
Chengzhong Xu
AAML
MU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks"
10 / 10 papers shown
Title
MTL-UE: Learning to Learn Nothing for Multi-Task Learning
Yi Yu
Song Xia
Siyuan Yang
Chenqi Kong
Wenhan Yang
Shijian Lu
Yap-Peng Tan
Alex Chichung Kot
46
0
0
08 May 2025
A Survey on Unlearnable Data
Jiahao Li
Yiqiang Chen
Yunbing Xing
Yang Gu
Xiangyuan Lan
AAML
58
0
0
30 Mar 2025
Nonlinear Transformations Against Unlearnable Datasets
T. Hapuarachchi
Jing Lin
Kaiqi Xiong
Mohamed Rahouti
Gitte Ost
28
1
0
05 Jun 2024
Effective and Robust Adversarial Training against Data and Label Corruptions
Pengfei Zhang
Zi Huang
Xin-Shun Xu
Guangdong Bai
51
4
0
07 May 2024
Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders
Yi Yu
Yufei Wang
Song Xia
Wenhan Yang
Shijian Lu
Yap-Peng Tan
A.C. Kot
AAML
37
11
0
02 May 2024
Transferable Availability Poisoning Attacks
Yiyong Liu
Michael Backes
Xiao Zhang
AAML
19
3
0
08 Oct 2023
Unlearnable Examples Give a False Sense of Security: Piercing through Unexploitable Data with Learnable Examples
Wanzhu Jiang
Yunfeng Diao
He-Nan Wang
Jianxin Sun
Hao Wu
Richang Hong
37
18
0
16 May 2023
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
147
190
0
13 Jan 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
228
677
0
19 Oct 2020
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
258
36,371
0
25 Aug 2016
1