ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14075
  4. Cited By
Search By Image: Deeply Exploring Beneficial Features for Beauty Product
  Retrieval

Search By Image: Deeply Exploring Beneficial Features for Beauty Product Retrieval

24 March 2023
Mingqiang Wei
Qian Sun
H. Xie
Dong Liang
F. Wang
ArXivPDFHTML

Papers citing "Search By Image: Deeply Exploring Beneficial Features for Beauty Product Retrieval"

16 / 16 papers shown
Title
Correlation Verification for Image Retrieval
Correlation Verification for Image Retrieval
Seongwon Lee
Hongje Seong
Suhyeon Lee
Euntai Kim
57
48
0
04 Apr 2022
Learning Super-Features for Image Retrieval
Learning Super-Features for Image Retrieval
Philippe Weinzaepfel
Thomas Lucas
Diane Larlus
Yannis Kalantidis
SupR
VLM
47
46
0
31 Jan 2022
Label Decoupling Framework for Salient Object Detection
Label Decoupling Framework for Salient Object Detection
Junhang Wei
Shuhui Wang
Zhe Wu
Chi Su
Qingming Huang
Q. Tian
46
273
0
25 Aug 2020
Hard negative examples are hard, but useful
Hard negative examples are hard, but useful
Hong Xuan
Abby Stylianou
Xiaotong Liu
Robert Pless
DML
80
126
0
24 Jul 2020
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
A. Brown
Weidi Xie
Vicky Kalogeiton
Andrew Zisserman
72
163
0
23 Jul 2020
Self-supervising Fine-grained Region Similarities for Large-scale Image
  Localization
Self-supervising Fine-grained Region Similarities for Large-scale Image Localization
Yixiao Ge
Haibo Wang
Feng Zhu
Rui Zhao
Hongsheng Li
SSL
42
160
0
06 Jun 2020
Generalized Product Quantization Network for Semi-supervised Image
  Retrieval
Generalized Product Quantization Network for Semi-supervised Image Retrieval
Young Kyun Jang
N. Cho
117
39
0
26 Feb 2020
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Yifan Sun
Changmao Cheng
Yuhan Zhang
Chi Zhang
Liang Zheng
Zhongdao Wang
Yichen Wei
83
857
0
25 Feb 2020
SOLAR: Second-Order Loss and Attention for Image Retrieval
SOLAR: Second-Order Loss and Attention for Image Retrieval
Tony Ng
Vassileios Balntas
Yurun Tian
K. Mikolajczyk
64
107
0
24 Jan 2020
MIC: Mining Interclass Characteristics for Improved Metric Learning
MIC: Mining Interclass Characteristics for Improved Metric Learning
Karsten Roth
Biagio Brattoli
Bjorn Ommer
51
89
0
25 Sep 2019
Learning with Average Precision: Training Image Retrieval with a
  Listwise Loss
Learning with Average Precision: Training Image Retrieval with a Listwise Loss
Jérôme Revaud
Jon Almazán
Rafael Sampaio de Rezende
César Roberto de Souza
VLM
60
373
0
18 Jun 2019
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
105
21,386
0
08 Apr 2018
YOLO9000: Better, Faster, Stronger
YOLO9000: Better, Faster, Stronger
Joseph Redmon
Ali Farhadi
VLM
ObjD
179
15,602
0
25 Dec 2016
Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection
Nayeon Lee
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
443
22,040
0
09 Dec 2016
SIFT Meets CNN: A Decade Survey of Instance Retrieval
SIFT Meets CNN: A Decade Survey of Instance Retrieval
Liang Zheng
Yi Yang
Q. Tian
67
697
0
05 Aug 2016
Particular object retrieval with integral max-pooling of CNN activations
Particular object retrieval with integral max-pooling of CNN activations
Giorgos Tolias
R. Sicre
Hervé Jégou
90
967
0
18 Nov 2015
1