ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.13937
  4. Cited By
Topological Reconstruction of Particle Physics Processes using Graph
  Neural Networks

Topological Reconstruction of Particle Physics Processes using Graph Neural Networks

24 March 2023
Lukas Ehrke
J. A. Raine
K. Zoch
M. Guth
T. Golling
    BDL
    AI4CE
ArXivPDFHTML

Papers citing "Topological Reconstruction of Particle Physics Processes using Graph Neural Networks"

3 / 3 papers shown
Title
PASCL: Supervised Contrastive Learning with Perturbative Augmentation
  for Particle Decay Reconstruction
PASCL: Supervised Contrastive Learning with Perturbative Augmentation for Particle Decay Reconstruction
Junjian Lu
Siwei Liu
Dmitrii Kobylianski
Etienne Dreyer
Eilam Gross
Shangsong Liang
29
3
0
18 Feb 2024
Reconstruction of Unstable Heavy Particles Using Deep
  Symmetry-Preserving Attention Networks
Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks
M. Fenton
Alexander Shmakov
H. Okawa
Yuji Li
Ko-Yang Hsiao
Shih-Chieh Hsu
D. Whiteson
Pierre Baldi
32
7
0
05 Sep 2023
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving
  Attention Networks
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks
M. Fenton
Alexander Shmakov
Ta-Wei Ho
S. Hsu
D. Whiteson
Pierre Baldi
39
37
0
19 Oct 2020
1