ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12641
  4. Cited By
Reveal to Revise: An Explainable AI Life Cycle for Iterative Bias
  Correction of Deep Models

Reveal to Revise: An Explainable AI Life Cycle for Iterative Bias Correction of Deep Models

22 March 2023
Frederik Pahde
Maximilian Dreyer
Wojciech Samek
Sebastian Lapuschkin
ArXivPDFHTML

Papers citing "Reveal to Revise: An Explainable AI Life Cycle for Iterative Bias Correction of Deep Models"

6 / 6 papers shown
Title
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Frederik Pahde
Maximilian Dreyer
Leander Weber
Moritz Weckbecker
Christopher J. Anders
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
100
9
0
07 Feb 2022
Interpretations are useful: penalizing explanations to align neural
  networks with prior knowledge
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
Laura Rieger
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
73
213
0
30 Sep 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
123
17,950
0
28 May 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
74
1,005
0
26 Feb 2019
Beyond Word Importance: Contextual Decomposition to Extract Interactions
  from LSTMs
Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs
W. James Murdoch
Peter J. Liu
Bin Yu
58
209
0
16 Jan 2018
Right for the Right Reasons: Training Differentiable Models by
  Constraining their Explanations
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
108
585
0
10 Mar 2017
1