ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11274
  4. Cited By
Cascading Hierarchical Networks with Multi-task Balanced Loss for
  Fine-grained hashing

Cascading Hierarchical Networks with Multi-task Balanced Loss for Fine-grained hashing

20 March 2023
Xianxian Zeng
Yanjun Zheng
ArXivPDFHTML

Papers citing "Cascading Hierarchical Networks with Multi-task Balanced Loss for Fine-grained hashing"

25 / 25 papers shown
Title
SEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image
  Retrieval
SEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image Retrieval
Yang Shen
Xuhao Sun
Xiu-Shen Wei
Qing-Yuan Jiang
Jian Yang
72
18
0
28 Sep 2022
ExchNet: A Unified Hashing Network for Large-Scale Fine-Grained Image
  Retrieval
ExchNet: A Unified Hashing Network for Large-Scale Fine-Grained Image Retrieval
Quan Cui
Qing-Yuan Jiang
Xiu-Shen Wei
Wu-Jun Li
Osamu Yoshie
38
37
0
04 Aug 2020
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling
Qi Qian
Lei Shang
Baigui Sun
Juhua Hu
Hao Li
Rong Jin
34
373
0
11 Sep 2019
Multi-Similarity Loss with General Pair Weighting for Deep Metric
  Learning
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
Xun Wang
Xintong Han
Weilin Huang
Dengke Dong
Matthew R. Scott
53
742
0
14 Apr 2019
RPC: A Large-Scale Retail Product Checkout Dataset
RPC: A Large-Scale Retail Product Checkout Dataset
Xiu-Shen Wei
Quan Cui
Lei Yang
Peng Wang
Lingqiao Liu
30
124
0
22 Jan 2019
Learning to Zoom: a Saliency-Based Sampling Layer for Neural Networks
Learning to Zoom: a Saliency-Based Sampling Layer for Neural Networks
Adrià Recasens
Petr Kellnhofer
Simon Stent
Wojciech Matusik
Antonio Torralba
55
131
0
10 Sep 2018
Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition
Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition
Chaojian Yu
Xinyi Zhao
Qi Zheng
Peng Zhang
Xinge You
33
292
0
26 Jul 2018
Deep Saliency Hashing
Deep Saliency Hashing
Sheng Jin
Huanjin Yao
Xiaoshuai Sun
Shangchen Zhou
Lei Zhang
Xiansheng Hua
31
47
0
04 Jul 2018
Asymmetric Deep Supervised Hashing
Asymmetric Deep Supervised Hashing
Qing-Yuan Jiang
Wu-Jun Li
37
241
0
26 Jul 2017
HashNet: Deep Learning to Hash by Continuation
HashNet: Deep Learning to Hash by Continuation
Zhangjie Cao
Mingsheng Long
Jianmin Wang
Philip S. Yu
58
616
0
02 Feb 2017
Local Similarity-Aware Deep Feature Embedding
Local Similarity-Aware Deep Feature Embedding
Chen Huang
Chen Change Loy
Xiaoou Tang
48
175
0
27 Oct 2016
Achieving Human Parity in Conversational Speech Recognition
Achieving Human Parity in Conversational Speech Recognition
Wayne Xiong
J. Droppo
Xuedong Huang
Frank Seide
M. Seltzer
A. Stolcke
Dong Yu
Geoffrey Zweig
60
578
0
17 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
631
36,599
0
25 Aug 2016
A Survey on Learning to Hash
A Survey on Learning to Hash
Jingdong Wang
Ting Zhang
Jingkuan Song
N. Sebe
Heng Tao Shen
89
969
0
01 Jun 2016
Deep Image Retrieval: Learning global representations for image search
Deep Image Retrieval: Learning global representations for image search
Albert Gordo
Jon Almazán
Jérôme Revaud
Diane Larlus
60
805
0
05 Apr 2016
Part-Stacked CNN for Fine-Grained Visual Categorization
Part-Stacked CNN for Fine-Grained Visual Categorization
Shaoli Huang
Zhe Xu
Dacheng Tao
Ya Zhang
63
418
0
26 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Embedding Label Structures for Fine-Grained Feature Representation
Embedding Label Structures for Fine-Grained Feature Representation
Zherong Zhang
Chunyu Lin
Yuanqing Lin
Yao Zhao
37
196
0
09 Dec 2015
The Unreasonable Effectiveness of Noisy Data for Fine-Grained
  Recognition
The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition
J. Krause
Benjamin Sapp
Andrew Howard
Howard Zhou
Alexander Toshev
Tom Duerig
James Philbin
Fei-Fei Li
50
364
0
20 Nov 2015
Compact Bilinear Pooling
Compact Bilinear Pooling
Yang Gao
Oscar Beijbom
Ning Zhang
Trevor Darrell
52
791
0
19 Nov 2015
Feature Learning based Deep Supervised Hashing with Pairwise Labels
Feature Learning based Deep Supervised Hashing with Pairwise Labels
Wu-Jun Li
Sheng Wang
Wang-Cheng Kang
53
657
0
12 Nov 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
200
18,534
0
06 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
943
99,991
0
04 Sep 2014
Part-based R-CNNs for Fine-grained Category Detection
Part-based R-CNNs for Fine-grained Category Detection
Ning Zhang
Jeff Donahue
Ross B. Girshick
Trevor Darrell
ObjD
88
1,223
0
15 Jul 2014
Fine-Grained Visual Classification of Aircraft
Fine-Grained Visual Classification of Aircraft
Subhransu Maji
Esa Rahtu
Arno Solin
Matthew Blaschko
Andrea Vedaldi
86
2,227
0
21 Jun 2013
1