ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10342
  4. Cited By
Whole-slide-imaging Cancer Metastases Detection and Localization with
  Limited Tumorous Data

Whole-slide-imaging Cancer Metastases Detection and Localization with Limited Tumorous Data

18 March 2023
Yinsheng He
Xingyu Li
    MedIm
ArXivPDFHTML

Papers citing "Whole-slide-imaging Cancer Metastases Detection and Localization with Limited Tumorous Data"

18 / 18 papers shown
Title
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
99
355
0
13 May 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
158
469
0
26 Jan 2022
Self-Supervised Representation Learning using Visual Field Expansion on
  Digital Pathology
Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
Joseph Boyd
Mykola Liashuha
Eric Deutsch
Nikos Paragios
Stergios Christodoulidis
Maria Vakalopoulou
MedIm
44
35
0
07 Sep 2021
Few-shot Medical Image Segmentation using a Global Correlation Network
  with Discriminative Embedding
Few-shot Medical Image Segmentation using a Global Correlation Network with Discriminative Embedding
Liyan Sun
Chenxin Li
Xinghao Ding
Yue Huang
Guisheng Wang
Yizhou Yu
55
112
0
10 Dec 2020
G2D: Generate to Detect Anomaly
G2D: Generate to Detect Anomaly
M. PourReza
Bahram Mohammadi
Mostafa Khaki
Samir Bouindour
H. Snoussi
Mohammad Sabokrou
34
62
0
20 Jun 2020
Computer-aided Detection of Squamous Carcinoma of the Cervix in Whole
  Slide Images
Computer-aided Detection of Squamous Carcinoma of the Cervix in Whole Slide Images
Ye Tian
Li Yang
Wei Wang
Jing Zhang
Qing Tang
Mili Ji
Yang Yu
Yu Li
Hong Yang
A. Qian
24
11
0
27 May 2019
Memorizing Normality to Detect Anomaly: Memory-augmented Deep
  Autoencoder for Unsupervised Anomaly Detection
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
Dong Gong
Lingqiao Liu
Vuong Le
Budhaditya Saha
M. Mansour
Svetha Venkatesh
Anton Van Den Hengel
UQCV
34
1,254
0
04 Apr 2019
Improving Unsupervised Defect Segmentation by Applying Structural
  Similarity to Autoencoders
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
48
661
0
05 Jul 2018
Cancer Metastasis Detection With Neural Conditional Random Field
Cancer Metastasis Detection With Neural Conditional Random Field
Yi Li
Ming-Yu Liu
MedIm
35
100
0
19 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
248
666
0
07 Jun 2018
A Robust and Effective Approach Towards Accurate Metastasis Detection
  and pN-stage Classification in Breast Cancer
A Robust and Effective Approach Towards Accurate Metastasis Detection and pN-stage Classification in Breast Cancer
Byungjae Lee
K. Paeng
30
55
0
30 May 2018
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
GAN
57
1,377
0
17 May 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
61
2,219
0
17 Mar 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
213
8,072
0
15 Mar 2017
Deep Learning for Identifying Metastatic Breast Cancer
Deep Learning for Identifying Metastatic Breast Cancer
Dayong Wang
A. Khosla
Rishab Gargeya
H. Irshad
Andrew H. Beck
MedIm
49
940
0
18 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
290
7,299
0
13 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
263
7,951
0
23 May 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
813
149,474
0
22 Dec 2014
1