35
3
v1v2 (latest)

An Input-to-State Stability Perspective on Robust Locomotion

Abstract

Uneven terrain necessarily transforms periodic walking into a non-periodic motion. As such, traditional stability analysis tools no longer adequately capture the ability of a bipedal robot to locomote in the presence of such disturbances. This motivates the need for analytical tools aimed at generalized notions of stability -- robustness. Towards this, we propose a novel definition of robustness, termed \emph{δ\delta-robustness}, to characterize the domain on which a nominal periodic orbit remains stable despite uncertain terrain. This definition is derived by treating perturbations in ground height as disturbances in the context of the input-to-state-stability (ISS) of the extended Poincar\'{e} map associated with a periodic orbit. The main theoretic result is the formulation of robust Lyapunov functions that certify δ\delta-robustness of periodic orbits. This yields an optimization framework for verifying δ\delta-robustness, which is demonstrated in simulation with a bipedal robot walking on uneven terrain.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.