ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10158
  4. Cited By
Data-centric Artificial Intelligence: A Survey

Data-centric Artificial Intelligence: A Survey

17 March 2023
Daochen Zha
Zaid Pervaiz Bhat
Kwei-Herng Lai
Fan Yang
Zhimeng Jiang
Shaochen Zhong
Xia Hu
ArXivPDFHTML

Papers citing "Data-centric Artificial Intelligence: A Survey"

12 / 112 papers shown
Title
Context-aware Domain Adaptation for Time Series Anomaly Detection
Context-aware Domain Adaptation for Time Series Anomaly Detection
Kwei-Herng Lai
Lan Wang
Huiyuan Chen
Kaixiong Zhou
Fei Wang
Hao Yang
Xia Hu
TTA
AI4TS
37
8
0
15 Apr 2023
Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
  Approach
Chasing Fairness Under Distribution Shift: A Model Weight Perturbation Approach
Zhimeng Jiang
Xiaotian Han
Hongye Jin
Guanchu Wang
Rui Chen
Na Zou
Xia Hu
12
13
0
06 Mar 2023
CoRTX: Contrastive Framework for Real-time Explanation
CoRTX: Contrastive Framework for Real-time Explanation
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Quan-Gen Zhou
Pushkar Tripathi
Xuanting Cai
Xia Hu
46
20
0
05 Mar 2023
DataPerf: Benchmarks for Data-Centric AI Development
DataPerf: Benchmarks for Data-Centric AI Development
Mark Mazumder
Colby R. Banbury
Xiaozhe Yao
Bojan Karlavs
W. G. Rojas
...
Carole-Jean Wu
Cody Coleman
Andrew Y. Ng
Peter Mattson
Vijay Janapa Reddi
VLM
43
102
0
20 Jul 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
319
11,953
0
04 Mar 2022
Learning From How Humans Correct
Learning From How Humans Correct
Tonglei Guo
NoLa
16
1
0
30 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
243
1,919
0
31 Dec 2020
BRPO: Batch Residual Policy Optimization
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
139
46
0
08 Feb 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
258
1,589
0
21 Jan 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
163
25,256
0
09 Jun 2011
Previous
123