ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09340
  4. Cited By
Improving Automated Hemorrhage Detection in Sparse-view Computed
  Tomography via Deep Convolutional Neural Network based Artifact Reduction

Improving Automated Hemorrhage Detection in Sparse-view Computed Tomography via Deep Convolutional Neural Network based Artifact Reduction

16 March 2023
Johannes M. Thalhammer
M. Schultheiss
Tina Dorosti
Tobias Lasser
F. Pfeiffer
Daniela Pfeiffer
F. Schaff
ArXivPDFHTML

Papers citing "Improving Automated Hemorrhage Detection in Sparse-view Computed Tomography via Deep Convolutional Neural Network based Artifact Reduction"

1 / 1 papers shown
Title
WNet: A data-driven dual-domain denoising model for sparse-view computed
  tomography with a trainable reconstruction layer
WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer
Theodor Cheslerean-Boghiu
Felix C. Hofmann
M. Schultheiss
F. Pfeiffer
Daniela Pfeiffer
Tobias Lasser
MedIm
OOD
25
24
0
01 Jul 2022
1