Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.06302
Cited By
Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey
11 March 2023
Yulong Wang
Tong Sun
Shenghong Li
Xinnan Yuan
W. Ni
Ekram Hossain
H. Vincent Poor
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey"
4 / 54 papers shown
Title
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
146
4,895
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
264
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
261
14,912
1
21 Dec 2013
Manifold estimation and singular deconvolution under Hausdorff loss
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
UQCV
65
101
0
21 Sep 2011
Previous
1
2