ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06302
  4. Cited By
Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
  Contemporary Survey

Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey

11 March 2023
Yulong Wang
Tong Sun
Shenghong Li
Xinnan Yuan
W. Ni
Ekram Hossain
H. Vincent Poor
    AAML
ArXivPDFHTML

Papers citing "Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey"

4 / 54 papers shown
Title
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
146
4,895
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
264
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
261
14,912
1
21 Dec 2013
Manifold estimation and singular deconvolution under Hausdorff loss
Manifold estimation and singular deconvolution under Hausdorff loss
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
UQCV
65
101
0
21 Sep 2011
Previous
12