ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04676
  4. Cited By
Considerations on the Theory of Training Models with Differential
  Privacy
v1v2 (latest)

Considerations on the Theory of Training Models with Differential Privacy

8 March 2023
Marten van Dijk
Phuong Ha Nguyen
    FedML
ArXiv (abs)PDFHTML

Papers citing "Considerations on the Theory of Training Models with Differential Privacy"

18 / 18 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
301
30,152
0
01 Mar 2022
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption
  (Extended Version)
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption (Extended Version)
Axel S. Feldmann
Nikola Samardzic
A. Krastev
S. Devadas
R. Dreslinski
Karim M. El Defrawy
Nicholas Genise
Chris Peikert
Daniel Sánchez
126
262
0
11 Sep 2021
CrypTen: Secure Multi-Party Computation Meets Machine Learning
CrypTen: Secure Multi-Party Computation Meets Machine Learning
Brian Knott
Shobha Venkataraman
Awni Y. Hannun
Shubho Sengupta
Mark Ibrahim
Laurens van der Maaten
94
364
0
02 Sep 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
55
104
0
16 Jun 2021
Inverting Gradients -- How easy is it to break privacy in federated
  learning?
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
121
1,234
0
31 Mar 2020
Threats to Federated Learning: A Survey
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
281
444
0
04 Mar 2020
iDLG: Improved Deep Leakage from Gradients
iDLG: Improved Deep Leakage from Gradients
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
81
643
0
08 Jan 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
279
6,307
0
10 Dec 2019
Differentially Private Model Publishing for Deep Learning
Differentially Private Model Publishing for Deep Learning
Lei Yu
Ling Liu
C. Pu
Mehmet Emre Gursoy
Stacey Truex
FedML
92
268
0
03 Apr 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
128
2,676
0
04 Feb 2019
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
127
66
0
10 Nov 2018
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLRMIALMMIACV
280
4,168
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
147
1,910
0
08 Oct 2016
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedMLSyDa
220
6,172
0
01 Jul 2016
Revisiting Distributed Synchronous SGD
Revisiting Distributed Synchronous SGD
Jianmin Chen
Xinghao Pan
R. Monga
Samy Bengio
Rafal Jozefowicz
89
801
0
04 Apr 2016
Concentrated Differential Privacy
Concentrated Differential Privacy
Cynthia Dwork
G. Rothblum
82
453
0
06 Mar 2016
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
147
499
0
27 Jun 2015
Near-Optimal Algorithms for Differentially-Private Principal Components
Near-Optimal Algorithms for Differentially-Private Principal Components
Kamalika Chaudhuri
Anand D. Sarwate
Kaushik Sinha
115
158
0
12 Jul 2012
1