ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.03005
  4. Cited By
Scaling strategies for on-device low-complexity source separation with
  Conv-Tasnet

Scaling strategies for on-device low-complexity source separation with Conv-Tasnet

6 March 2023
Mohamed Nabih Ali
Francesco Paissan
Daniele Falavigna
A. Brutti
ArXivPDFHTML

Papers citing "Scaling strategies for on-device low-complexity source separation with Conv-Tasnet"

5 / 5 papers shown
Title
An objective evaluation of Hearing Aids and DNN-based speech enhancement
  in complex acoustic scenes
An objective evaluation of Hearing Aids and DNN-based speech enhancement in complex acoustic scenes
Enric Gusó
Joanna Luberadzka
Martí Baig
Umut Sayin Saraç
Xavier Serra
15
2
0
24 Jul 2023
PhiNets: a scalable backbone for low-power AI at the edge
PhiNets: a scalable backbone for low-power AI at the edge
Francesco Paissan
Alberto Ancilotto
Elisabetta Farella
26
32
0
01 Oct 2021
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
  Separation
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Daniel Stoller
Sebastian Ewert
S. Dixon
AI4TS
104
588
0
08 Jun 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
206
14,368
0
07 Oct 2016
1