ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02577
  4. Cited By
Effectiveness of Data Augmentation for Parameter Efficient Tuning with
  Limited Data

Effectiveness of Data Augmentation for Parameter Efficient Tuning with Limited Data

5 March 2023
Stephen Obadinma
Hongyu Guo
Xiao-Dan Zhu
ArXivPDFHTML

Papers citing "Effectiveness of Data Augmentation for Parameter Efficient Tuning with Limited Data"

4 / 4 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
806
0
14 Oct 2021
Improving Zero and Few-Shot Abstractive Summarization with Intermediate
  Fine-tuning and Data Augmentation
Improving Zero and Few-Shot Abstractive Summarization with Intermediate Fine-tuning and Data Augmentation
Alexander R. Fabbri
Simeng Han
Haoyuan Li
Haoran Li
Marjan Ghazvininejad
Shafiq R. Joty
Dragomir R. Radev
Yashar Mehdad
123
95
0
24 Oct 2020
The Tatoeba Translation Challenge -- Realistic Data Sets for Low
  Resource and Multilingual MT
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
Jörg Tiedemann
168
164
0
13 Oct 2020
Big Bird: Transformers for Longer Sequences
Big Bird: Transformers for Longer Sequences
Manzil Zaheer
Guru Guruganesh
Kumar Avinava Dubey
Joshua Ainslie
Chris Alberti
...
Philip Pham
Anirudh Ravula
Qifan Wang
Li Yang
Amr Ahmed
VLM
285
2,015
0
28 Jul 2020
1