Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.02322
Cited By
Improved Robustness Against Adaptive Attacks With Ensembles and Error-Correcting Output Codes
4 March 2023
Thomas Philippon
Christian Gagné
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improved Robustness Against Adaptive Attacks With Ensembles and Error-Correcting Output Codes"
17 / 17 papers shown
Title
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
128
493
0
02 Feb 2021
Integer Programming-based Error-Correcting Output Code Design for Robust Classification
Samarth Gupta
Saurabh Amin
21
4
0
30 Oct 2020
Batch Normalization Increases Adversarial Vulnerability and Decreases Adversarial Transferability: A Non-Robust Feature Perspective
Philipp Benz
Chaoning Zhang
In So Kweon
AAML
51
41
0
07 Oct 2020
Deep Convolutional Neural Network Ensembles using ECOC
Sara Atito Ali Ahmed
Cemre Zor
Berrin Yanikoglu
Muhammad Awais
J. Kittler
20
6
0
07 Sep 2020
EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness against Adversarial Attacks
Sanchari Sen
Balaraman Ravindran
A. Raghunathan
FedML
AAML
47
63
0
21 Apr 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
277
834
0
19 Feb 2020
Error-Correcting Output Codes with Ensemble Diversity for Robust Learning in Neural Networks
Yang Song
Qiyu Kang
Wee Peng Tay
AAML
48
21
0
30 Nov 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
89
901
0
18 Feb 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
78
439
0
25 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
140
2,551
0
24 Jan 2019
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
230
3,186
0
01 Feb 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,069
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
Basel Alomair
AAML
80
242
0
15 Jun 2017
Robustness to Adversarial Examples through an Ensemble of Specialists
Mahdieh Abbasi
Christian Gagné
AAML
79
109
0
22 Feb 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
277
14,927
1
21 Dec 2013
1