ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02315
14
4

Optimizing Fuel-Constrained UAV-UGV Routes for Large Scale Coverage: Bilevel Planning in Heterogeneous Multi-Agent Systems

4 March 2023
Md Safwan Mondal
S. Ramasamy
Pranav A. Bhounsule
ArXivPDFHTML
Abstract

Fast moving unmanned aerial vehicles (UAVs) are well suited for aerial surveillance, but are limited by their battery capacity. To increase their endurance UAVs can be refueled on slow moving unmanned ground vehicles (UGVs). The cooperative routing of UAV-UGV multi-agent system to survey vast regions within their speed and fuel constraints is a computationally challenging problem, but can be simplified with heuristics. Here we present multiple heuristics to enable feasible and sufficiently optimal solutions to the problem. Using the UAV fuel limits and the minimum set cover algorithm, the UGV refueling stops are determined. These refueling stops enable the allocation of mission points to the UAV and UGV. A standard traveling salesman formulation and a vehicle routing formulation with time windows, dropped visits, and capacity constraints is used to solve for the UGV and UAV route, respectively. Experimental validation on a small-scale testbed (http://tiny.cc/8or8vz) underscores the effectiveness of our multi-agent approach.

View on arXiv
Comments on this paper