ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02045
  4. Cited By
Uncertainty Estimation by Fisher Information-based Evidential Deep
  Learning

Uncertainty Estimation by Fisher Information-based Evidential Deep Learning

3 March 2023
Danruo Deng
Guangyong Chen
Yang Yu
Fu-Lun Liu
Pheng-Ann Heng
    EDL
    UQCV
    FedML
ArXivPDFHTML

Papers citing "Uncertainty Estimation by Fisher Information-based Evidential Deep Learning"

10 / 10 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
110
0
0
04 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
Likelihood-ratio-based confidence intervals for neural networks
Likelihood-ratio-based confidence intervals for neural networks
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
30
0
0
04 Aug 2023
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
177
35
0
20 May 2022
On the Importance of Firth Bias Reduction in Few-Shot Classification
On the Importance of Firth Bias Reduction in Few-Shot Classification
Saba Ghaffari
Ehsan Saleh
David A. Forsyth
Yu-xiong Wang
32
13
0
06 Oct 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
181
53
0
19 May 2021
Free Lunch for Few-shot Learning: Distribution Calibration
Free Lunch for Few-shot Learning: Distribution Calibration
Shuo Yang
Lu Liu
Min Xu
OODD
213
322
0
16 Jan 2021
Uncertainty Aware Semi-Supervised Learning on Graph Data
Uncertainty Aware Semi-Supervised Learning on Graph Data
Xujiang Zhao
Feng Chen
Shu Hu
Jin-Hee Cho
UQCV
EDL
BDL
118
130
0
24 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1