ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01778
  4. Cited By
FedML Parrot: A Scalable Federated Learning System via
  Heterogeneity-aware Scheduling on Sequential and Hierarchical Training

FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training

3 March 2023
Zhenheng Tang
X. Chu
Ryan Yide Ran
Sunwoo Lee
S. Shi
Yonggang Zhang
Yuxin Wang
Alex Liang
A. Avestimehr
Chaoyang He
    FedML
ArXivPDFHTML

Papers citing "FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training"

10 / 10 papers shown
Title
FuseFL: One-Shot Federated Learning through the Lens of Causality with
  Progressive Model Fusion
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion
Zhenheng Tang
Yonggang Zhang
Peijie Dong
Y. Cheung
Amelie Chi Zhou
Bo Han
Xiaowen Chu
FedML
MoMe
AI4CE
49
6
0
27 Oct 2024
Flight: A FaaS-Based Framework for Complex and Hierarchical Federated
  Learning
Flight: A FaaS-Based Framework for Complex and Hierarchical Federated Learning
Nathaniel Hudson
Valérie Hayot-Sasson
Y. Babuji
Matt Baughman
J. G. Pauloski
Ryan Chard
Ian Foster
Kyle Chard
40
1
0
24 Sep 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
24
13
0
10 Feb 2024
Pollen: High-throughput Federated Learning Simulation via Resource-Aware
  Client Placement
Pollen: High-throughput Federated Learning Simulation via Resource-Aware Client Placement
Lorenzo Sani
Pedro Gusmão
Alexandru Iacob
Wanru Zhao
Xinchi Qiu
Yan Gao
Javier Fernandez-Marques
Nicholas D. Lane
34
0
0
30 Jun 2023
Papaya: Practical, Private, and Scalable Federated Learning
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
110
137
0
08 Nov 2021
Emerging Trends in Federated Learning: From Model Fusion to Federated X
  Learning
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
92
946
0
03 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1