ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01775
  4. Cited By
Continual Causal Inference with Incremental Observational Data

Continual Causal Inference with Incremental Observational Data

3 March 2023
Zhixuan Chu
Ruopeng Li
S. Rathbun
Sheng Li
    CML
ArXiv (abs)PDFHTML

Papers citing "Continual Causal Inference with Incremental Observational Data"

16 / 16 papers shown
Title
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
Zhixuan Chu
Jia-Bin Huang
Ruopeng Li
Wei Chu
Sheng Li
CMLOOD
105
8
0
02 Feb 2023
Learning Infomax and Domain-Independent Representations for Causal
  Effect Inference with Real-World Data
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
Zhixuan Chu
S. Rathbun
Sheng Li
CMLOOD
80
15
0
22 Feb 2022
Graph Infomax Adversarial Learning for Treatment Effect Estimation with
  Networked Observational Data
Graph Infomax Adversarial Learning for Treatment Effect Estimation with Networked Observational Data
Zhixuan Chu
S. Rathbun
Sheng Li
CML
47
48
0
05 Jun 2021
Memory-Efficient Incremental Learning Through Feature Adaptation
Memory-Efficient Incremental Learning Through Feature Adaptation
Ahmet Iscen
Jeffrey O. Zhang
Svetlana Lazebnik
Cordelia Schmid
CLLVLM
54
165
0
01 Apr 2020
A Survey on Causal Inference
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
103
512
0
05 Feb 2020
Group Average Treatment Effects for Observational Studies
Group Average Treatment Effects for Observational Studies
D. Jacob
CML
64
20
0
07 Nov 2019
Learning Individual Causal Effects from Networked Observational Data
Learning Individual Causal Effects from Networked Observational Data
Ruocheng Guo
Wenlin Yao
Huan Liu
CMLOOD
54
98
0
08 Jun 2019
Class-incremental Learning via Deep Model Consolidation
Class-incremental Learning via Deep Model Consolidation
Junting Zhang
Jie Zhang
Shalini Ghosh
Dawei Li
Serafettin Tasci
Larry Heck
Heming Zhang
C.-C. Jay Kuo
CLL
84
339
0
19 Mar 2019
Learning without Memorizing
Learning without Memorizing
Prithviraj Dhar
Rajat Vikram Singh
Kuan-Chuan Peng
Ziyan Wu
Rama Chellappa
CLL
90
487
0
20 Nov 2018
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CMLBDL
71
111
0
01 Oct 2018
Cosine Normalization: Using Cosine Similarity Instead of Dot Product in
  Neural Networks
Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks
Chunjie Luo
Jianfeng Zhan
Lei Wang
Qiang Yang
86
203
0
20 Feb 2017
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
162
3,782
0
23 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
308
4,432
0
29 Jun 2016
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CMLOODBDL
306
729
0
12 May 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,745
0
09 Mar 2015
A method for generating realistic correlation matrices
A method for generating realistic correlation matrices
Johanna S. Hardin
S. Garcia
David Golan
73
83
0
29 Jun 2011
1