Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01767
Cited By
Implicit Stochastic Gradient Descent for Training Physics-informed Neural Networks
3 March 2023
Ye Li
Songcan Chen
Shengyi Huang
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Stochastic Gradient Descent for Training Physics-informed Neural Networks"
15 / 15 papers shown
Title
Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
Ameya Dilip Jagtap
Yeonjong Shin
Kenji Kawaguchi
George Karniadakis
ODL
72
134
0
20 May 2021
The Dynamics of Gradient Descent for Overparametrized Neural Networks
Siddhartha Satpathi
R. Srikant
MLT
AI4CE
38
14
0
13 May 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
175
456
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
115
128
0
14 Dec 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
130
908
0
28 Jul 2020
Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks
Ameya Dilip Jagtap
Kenji Kawaguchi
George Karniadakis
ODL
61
85
0
25 Sep 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
95
1,528
0
10 Jul 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
178
448
0
21 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
242
1,462
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
192
1,135
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,272
0
04 Oct 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
135
1,438
0
22 Jun 2018
Stochastic Backward Euler: An Implicit Gradient Descent Algorithm for
k
k
k
-means Clustering
Penghang Yin
Minh Pham
Adam M. Oberman
Stanley Osher
FedML
60
15
0
21 Oct 2017
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
67
56
0
10 May 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1