Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01704
Cited By
Feature Importance Disparities for Data Bias Investigations
3 March 2023
Peter W. Chang
Leor Fishman
Seth Neel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Feature Importance Disparities for Data Bias Investigations"
20 / 20 papers shown
Title
OpenXAI: Towards a Transparent Evaluation of Model Explanations
Chirag Agarwal
Dan Ley
Satyapriya Krishna
Eshika Saxena
Martin Pawelczyk
Nari Johnson
Isha Puri
Marinka Zitnik
Himabindu Lakkaraju
XAI
57
145
0
22 Jun 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
64
78
0
06 May 2022
Rethinking Stability for Attribution-based Explanations
Chirag Agarwal
Nari Johnson
Martin Pawelczyk
Satyapriya Krishna
Eshika Saxena
Marinka Zitnik
Himabindu Lakkaraju
FAtt
62
51
0
14 Mar 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
241
193
0
03 Feb 2022
Omnipredictors
Parikshit Gopalan
Adam Tauman Kalai
Omer Reingold
Vatsal Sharan
Udi Wieder
69
51
0
11 Sep 2021
Explainability for fair machine learning
T. Begley
Tobias Schwedes
Christopher Frye
Ilya Feige
FaML
FedML
84
47
0
14 Oct 2020
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
92
637
0
04 Oct 2020
Moment Multicalibration for Uncertainty Estimation
Christopher Jung
Changhwa Lee
Mallesh M. Pai
Aaron Roth
R. Vohra
UQCV
225
65
0
18 Aug 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
70
817
0
06 Nov 2019
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
76
526
0
21 Jun 2018
Datasheets for Datasets
Timnit Gebru
Jamie Morgenstern
Briana Vecchione
Jennifer Wortman Vaughan
Hanna M. Wallach
Hal Daumé
Kate Crawford
258
2,181
0
23 Mar 2018
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
224
1,100
0
06 Mar 2018
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
179
5,986
0
04 Mar 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
297
2,110
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
222
4,307
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
114
1,769
0
19 Sep 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
A Deeper Look at Dataset Bias
Tatiana Tommasi
Novi Patricia
Barbara Caputo
Tinne Tuytelaars
97
327
0
06 May 2015
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
309
7,292
0
20 Dec 2013
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
128
1,103
0
06 Dec 2009
1