Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01687
Cited By
v1
v2 (latest)
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
3 March 2023
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation"
33 / 33 papers shown
Title
DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Chen Gong
Kecen Li
Zinan Lin
Tianhao Wang
188
5
0
18 Mar 2025
Differentially Private Synthetic Data via APIs 3: Using Simulators Instead of Foundation Model
Zinan Lin
Tadas Baltrusaitis
Wenyu Wang
Sergey Yekhanin
SyDa
138
4
0
08 Feb 2025
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
98
0
0
03 Oct 2024
FedSDD: Scalable and Diversity-enhanced Distillation for Model Aggregation in Federated Learning
Ho Man Kwan
Shenghui Song
FedML
58
2
0
28 Dec 2023
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
Hui-Po Wang
Dingfan Chen
Raouf Kerkouche
Mario Fritz
FedML
DD
62
4
0
02 Feb 2023
Private Set Generation with Discriminative Information
Dingfan Chen
Raouf Kerkouche
Mario Fritz
DD
62
38
0
07 Nov 2022
A Kernel-Based View of Language Model Fine-Tuning
Sadhika Malladi
Alexander Wettig
Dingli Yu
Danqi Chen
Sanjeev Arora
VLM
112
67
0
11 Oct 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
67
21
0
25 Jun 2022
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
AAML
75
28
0
25 Jun 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
86
39
0
04 Apr 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
117
8
0
07 Mar 2022
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
80
71
0
01 Nov 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
63
27
0
10 Jun 2021
PEARL: Data Synthesis via Private Embeddings and Adversarial Reconstruction Learning
Seng Pei Liew
Tsubasa Takahashi
Michihiko Ueno
FedML
58
30
0
08 Jun 2021
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
65
214
0
23 Apr 2021
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
99
190
0
28 Oct 2020
Distilled One-Shot Federated Learning
Yanlin Zhou
George Pu
Xiyao Ma
Xiaolin Li
D. Wu
FedML
DD
135
160
0
17 Sep 2020
Learning from Failure: Training Debiased Classifier from Biased Classifier
J. Nam
Hyuntak Cha
SungSoo Ahn
Jaeho Lee
Jinwoo Shin
63
149
0
06 Jul 2020
GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen
Tribhuvanesh Orekondy
Mario Fritz
SyDa
56
186
0
15 Jun 2020
DP-CGAN: Differentially Private Synthetic Data and Label Generation
Reihaneh Torkzadehmahani
Peter Kairouz
B. Paten
SyDa
69
236
0
27 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
256
6,261
0
10 Dec 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
64
162
0
03 Oct 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
835
0
19 Dec 2018
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
78
295
0
27 Nov 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
85
398
0
31 Jul 2018
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
64
95
0
29 May 2018
Differentially Private Generative Adversarial Network
Liyang Xie
Kaixiang Lin
Shu Wang
Fei Wang
Jiayu Zhou
SyDa
90
500
0
19 Feb 2018
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
144
1,493
0
04 Jan 2018
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
329
4,574
0
13 Nov 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
213
6,130
0
01 Jul 2016
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
84
530
0
14 May 2015
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
110
847
0
10 Feb 2015
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
531
0
03 Mar 2010
1