Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01256
Cited By
Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance
2 March 2023
Xin Gu
Gautam Kamath
Zhiwei Steven Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance"
12 / 12 papers shown
Title
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
34
0
0
01 Oct 2024
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
42
11
0
11 Aug 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
Privately Customizing Prefinetuning to Better Match User Data in Federated Learning
Charlie Hou
Hongyuan Zhan
Akshat Shrivastava
Sida I. Wang
S. Livshits
Giulia Fanti
Daniel Lazar
FedML
32
15
0
17 Feb 2023
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
111
32
0
09 Nov 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
132
119
0
07 Oct 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
Deep Visual Domain Adaptation
G. Csurka
OOD
138
185
0
28 Dec 2020
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
255
36,362
0
25 Aug 2016
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
177
9,327
0
28 May 2015
1