Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01055
Cited By
v1
v2 (latest)
Physics-informed neural networks for solving forward and inverse problems in complex beam systems
2 March 2023
Taniya Kapoor
Hongrui Wang
A. Núñez
R. Dollevoet
AI4CE
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Physics-informed neural networks for solving forward and inverse problems in complex beam systems"
9 / 9 papers shown
Title
Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
D. Veerababu
Prasanta K. Ghosh
104
1
0
26 Mar 2025
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
Michael G. Kapteyn
Jacob V. R. Pretorius
Karen E. Willcox
55
226
0
10 Dec 2020
Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
Pengzhan Jin
Zhen Zhang
Ioannis G. Kevrekidis
George Karniadakis
73
50
0
05 Dec 2020
Physics Guided Machine Learning Methods for Hydrology
A. Khandelwal
Shaoming Xu
Xiang Li
X. Jia
M. Steinbach
C. Duffy
John L. Nieber
Vipin Kumar
AI4CE
43
38
0
02 Dec 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
135
914
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
68
174
0
29 Jun 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
288
197
0
13 Mar 2020
Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling
Arka Daw
Anuj Karpatne
William Watkins
J. Read
Vipin Kumar
PINN
42
536
0
31 Oct 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CE
PINN
75
1,137
0
02 Aug 2017
1