ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.00935
6
2

Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy

2 March 2023
Xiaohai Hu
Aparajit Venkatesh
Yusen Wan
G. Zheng
Neel Jawale
Navneet Kaur
Xu Chen
Paul Birkmeyer
ArXivPDFHTML
Abstract

Detection of slip during object grasping and manipulation plays a vital role in object handling. Existing solutions primarily rely on visual information to devise a strategy for grasping. However, for robotic systems to attain a level of proficiency comparable to humans, especially in consistently handling and manipulating unfamiliar objects, integrating artificial tactile sensing is increasingly essential. We introduce a novel physics-informed, data-driven approach to detect slip continuously in real time. We employ the GelSight Mini, an optical tactile sensor, attached to custom-designed grippers to gather tactile data. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinctive features and formulates slip detection as a classification problem. To evaluate our approach, we test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials. Our results show that the best classification algorithm achieves a high average accuracy of 95.61%. We further illustrate the practical application of our research in dynamic robotic manipulation tasks, where our real-time slip detection and prevention algorithm is implemented.

View on arXiv
Comments on this paper