Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.00654
Cited By
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
1 March 2023
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy"
50 / 106 papers shown
Title
DeSIA: Attribute Inference Attacks Against Limited Fixed Aggregate Statistics
Yifeng Mao
Bozhidar Stevanoski
Yves-Alexandre de Montjoye
52
0
0
25 Apr 2025
Bayesian Pseudo Posterior Mechanism for Differentially Private Machine Learning
Robert Chew
Matthew R. Williams
Elan A. Segarra
Alexander J. Preiss
Amanda Konet
T. Savitsky
43
0
0
27 Mar 2025
Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
Junyi Zhu
Ruicong Yao
Taha Ceritli
Savas Ozkan
Matthew B. Blaschko
Eunchung Noh
Jeongwon Min
Cho Jung Min
Mete Ozay
FedML
103
0
0
26 Mar 2025
DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Chen Gong
Kecen Li
Zinan Lin
Tianhao Wang
61
3
0
18 Mar 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
64
0
0
16 Mar 2025
Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs
Bowen Tan
Zheng Xu
Eric P. Xing
Zhiting Hu
Shanshan Wu
SyDa
87
0
0
16 Mar 2025
(
ε
,
δ
)
(\varepsilon, δ)
(
ε
,
δ
)
Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Borja Balle
Antti Honkela
56
0
0
13 Mar 2025
Probabilistic Reasoning with LLMs for k-anonymity Estimation
Jonathan Zheng
Sauvik Das
Alan Ritter
Wei-ping Xu
60
0
0
12 Mar 2025
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
Tal Wagner
FedML
55
0
0
21 Feb 2025
Private Text Generation by Seeding Large Language Model Prompts
Supriya Nagesh
Justin Y. Chen
Nina Mishra
Tal Wagner
SyDa
SILM
66
1
0
20 Feb 2025
Smoothed Normalization for Efficient Distributed Private Optimization
Egor Shulgin
Sarit Khirirat
Peter Richtárik
FedML
87
0
0
20 Feb 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
64
2
0
28 Jan 2025
Advancing privacy in learning analytics using differential privacy
Qinyi Liu
Ronas Shakya
Mohammad Khalil
Jelena Jovanovic
44
1
0
03 Jan 2025
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
159
0
0
30 Dec 2024
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
85
4
0
21 Dec 2024
DP-2Stage: Adapting Language Models as Differentially Private Tabular Data Generators
Tejumade Afonja
Hui-Po Wang
Raouf Kerkouche
Mario Fritz
SyDa
118
2
0
03 Dec 2024
Preserving Expert-Level Privacy in Offline Reinforcement Learning
Navodita Sharma
Vishnu Vinod
Abhradeep Thakurta
Alekh Agarwal
Borja Balle
Christoph Dann
A. Raghuveer
OffRL
84
0
0
18 Nov 2024
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
41
5
0
06 Nov 2024
R+R:Understanding Hyperparameter Effects in DP-SGD
Felix Morsbach
J. Reubold
T. Strufe
36
0
0
04 Nov 2024
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
35
0
0
25 Oct 2024
Masked Differential Privacy
David Schneider
Sina Sajadmanesh
Vikash Sehwag
Saquib Sarfraz
Rainer Stiefelhagen
Lingjuan Lyu
Vivek Sharma
33
1
0
22 Oct 2024
CLEAR: Towards Contextual LLM-Empowered Privacy Policy Analysis and Risk Generation for Large Language Model Applications
Chaoran Chen
Daodao Zhou
Yanfang Ye
Toby Jia-jun Li
Yaxing Yao
AILaw
41
3
0
17 Oct 2024
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
53
5
0
11 Oct 2024
Privately Learning from Graphs with Applications in Fine-tuning Large Language Models
Haoteng Yin
Rongzhe Wei
Eli Chien
P. Li
33
0
0
10 Oct 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
34
7
0
08 Oct 2024
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
38
6
0
08 Oct 2024
Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models
Hongbin Liu
Lun Wang
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
37
0
0
02 Oct 2024
Training Large ASR Encoders with Differential Privacy
Geeticka Chauhan
Steve Chien
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
33
1
0
21 Sep 2024
Benchmarking Estimators for Natural Experiments: A Novel Dataset and a Doubly Robust Algorithm
R. Teal Witter
Christopher Musco
48
0
0
06 Sep 2024
Revisit Micro-batch Clipping: Adaptive Data Pruning via Gradient Manipulation
Lun Wang
34
0
0
29 Aug 2024
CELLM: An Efficient Communication in Large Language Models Training for Federated Learning
Raja Vavekanand
Kira Sam
56
0
0
30 Jul 2024
Granularity is crucial when applying differential privacy to text: An investigation for neural machine translation
Doan Nam Long Vu
Timour Igamberdiev
Ivan Habernal
52
0
0
26 Jul 2024
Synthetic Trajectory Generation Through Convolutional Neural Networks
Jesse Merhi
Erik Buchholz
S. Kanhere
37
0
0
24 Jul 2024
PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning
Luca Corbucci
Mikko A. Heikkilä
David Solans Noguero
Anna Monreale
Nicolas Kourtellis
FedML
52
3
0
21 Jul 2024
Private prediction for large-scale synthetic text generation
Kareem Amin
Alex Bie
Weiwei Kong
Alexey Kurakin
Natalia Ponomareva
Umar Syed
Andreas Terzis
Sergei Vassilvitskii
SyDa
SILM
48
3
0
16 Jul 2024
Differentially Private Neural Network Training under Hidden State Assumption
Ding Chen
Chen Liu
FedML
32
0
0
11 Jul 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
39
11
0
10 Jul 2024
Attack-Aware Noise Calibration for Differential Privacy
B. Kulynych
Juan Felipe Gomez
G. Kaissis
Flavio du Pin Calmon
Carmela Troncoso
57
6
0
02 Jul 2024
A Method to Facilitate Membership Inference Attacks in Deep Learning Models
Zitao Chen
Karthik Pattabiraman
MIACV
MLAU
AAML
MIALM
75
1
0
02 Jul 2024
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Lynn Chua
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Daogao Liu
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
34
11
0
20 Jun 2024
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
36
8
0
05 Jun 2024
The Cost of Arbitrariness for Individuals: Examining the Legal and Technical Challenges of Model Multiplicity
Prakhar Ganesh
Ihsan Ibrahim Daldaban
Ignacio Cofone
G. Farnadi
54
2
0
28 May 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
53
9
0
27 May 2024
Banded Square Root Matrix Factorization for Differentially Private Model Training
Nikita Kalinin
Christoph H. Lampert
34
6
0
22 May 2024
Federated Learning and Differential Privacy Techniques on Multi-hospital Population-scale Electrocardiogram Data
Vikhyat Agrawal
Sunil Vasu Kalmady
Venkataseetharam Manoj Malipeddi
Manisimha Manthena
Weijie Sun
Saiful Islam
Abram Hindle
Padma Kaul
Russell Greiner
FedML
27
5
0
26 Apr 2024
DNA: Differentially private Neural Augmentation for contact tracing
Rob Romijnders
Christos Louizos
Yuki M. Asano
Max Welling
FedML
31
0
0
20 Apr 2024
Towards Sustainable SecureML: Quantifying Carbon Footprint of Adversarial Machine Learning
Syed Mhamudul Hasan
Abdur R. Shahid
Ahmed Imteaj
AAML
26
4
0
27 Mar 2024
How Private are DP-SGD Implementations?
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
43
12
0
26 Mar 2024
Differentially Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
36
6
0
22 Mar 2024
Efficiently Computing Similarities to Private Datasets
A. Backurs
Zinan Lin
S. Mahabadi
Sandeep Silwal
Jakub Tarnawski
73
4
0
13 Mar 2024
1
2
3
Next