ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.00500
  4. Cited By
Inherently Interpretable Multi-Label Classification Using Class-Specific
  Counterfactuals
v1v2 (latest)

Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

1 March 2023
Susu Sun
S. Woerner
Andreas Maier
Lisa M. Koch
Christian F. Baumgartner
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals"

12 / 12 papers shown
Title
Soft-CAM: Making black box models self-explainable for high-stakes decisions
K. Djoumessi
Philipp Berens
FAttBDL
233
0
0
23 May 2025
DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
Suparshva Jain
Amit Sangroya
Lovekesh Vig
DiffM
123
1
0
17 Feb 2025
Conditional Diffusion Models are Medical Image Classifiers that Provide Explainability and Uncertainty for Free
Conditional Diffusion Models are Medical Image Classifiers that Provide Explainability and Uncertainty for Free
Gian Mario Favero
Parham Saremi
Emily Kaczmarek
Brennan Nichyporuk
Tal Arbel
DiffMMedIm
131
2
0
06 Feb 2025
Label-free Concept Based Multiple Instance Learning for Gigapixel Histopathology
Label-free Concept Based Multiple Instance Learning for Gigapixel Histopathology
Susu Sun
Leslie Tessier
Frédérique Meeuwsen
Clément Grisi
Dominique van Midden
G. Litjens
Christian F. Baumgartner
138
2
0
06 Jan 2025
Robust image representations with counterfactual contrastive learning
Robust image representations with counterfactual contrastive learning
Mélanie Roschewitz
Fabio De Sousa Ribeiro
Tian Xia
G. Khara
Ben Glocker
OODMedIm
156
2
0
16 Sep 2024
DeCoDEx: Confounder Detector Guidance for Improved Diffusion-based
  Counterfactual Explanations
DeCoDEx: Confounder Detector Guidance for Improved Diffusion-based Counterfactual Explanations
Nima Fathi
Amar Kumar
Brennan Nichyporuk
Mohammad Havaei
Tal Arbel
DiffMCML
137
2
0
15 May 2024
Counterfactual contrastive learning: robust representations via causal image synthesis
Counterfactual contrastive learning: robust representations via causal image synthesis
Mélanie Roschewitz
Fabio De Sousa Ribeiro
Tian Xia
G. Khara
Ben Glocker
OOD
94
5
0
14 Mar 2024
Generating Realistic Counterfactuals for Retinal Fundus and OCT Images
  using Diffusion Models
Generating Realistic Counterfactuals for Retinal Fundus and OCT Images using Diffusion Models
I. Ilanchezian
Valentyn Boreiko
Laura Kühlewein
Ziwei Huang
M. Ayhan
Matthias Hein
Lisa M. Koch
Philipp Berens
DiffMMedIm
70
4
0
20 Nov 2023
A Framework for Interpretability in Machine Learning for Medical Imaging
A Framework for Interpretability in Machine Learning for Medical Imaging
Alan Q. Wang
Batuhan K. Karaman
Heejong Kim
Jacob Rosenthal
Rachit Saluja
Sean I. Young
M. Sabuncu
AI4CE
136
13
0
02 Oct 2023
Is visual explanation with Grad-CAM more reliable for deeper neural
  networks? a case study with automatic pneumothorax diagnosis
Is visual explanation with Grad-CAM more reliable for deeper neural networks? a case study with automatic pneumothorax diagnosis
Zirui Qiu
H. Rivaz
Yiming Xiao
FAtt
50
5
0
29 Aug 2023
Right for the Wrong Reason: Can Interpretable ML Techniques Detect
  Spurious Correlations?
Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?
Susu Sun
Lisa M. Koch
Christian F. Baumgartner
103
16
0
23 Jul 2023
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.3K
17,241
0
16 Feb 2016
1