Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.14428
Cited By
Stochastic Gradient Descent under Markovian Sampling Schemes
28 February 2023
Mathieu Even
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Descent under Markovian Sampling Schemes"
23 / 23 papers shown
Title
Achieving Tighter Finite-Time Rates for Heterogeneous Federated Stochastic Approximation under Markovian Sampling
Feng Zhu
Aritra Mitra
Robert W. Heath
FedML
36
0
0
15 Apr 2025
Online Learning Algorithms in Hilbert Spaces with
β
−
\beta-
β
−
and
ϕ
−
\phi-
ϕ
−
Mixing Sequences
Priyanka Roy
Susanne Saminger-Platz
39
0
0
05 Feb 2025
Scalable Decentralized Learning with Teleportation
Yuki Takezawa
Sebastian U. Stich
64
1
0
25 Jan 2025
Boosting Asynchronous Decentralized Learning with Model Fragmentation
Sayan Biswas
Anne-Marie Kermarrec
Alexis Marouani
Rafael Pires
Rishi Sharma
M. Vos
25
1
0
16 Oct 2024
Long-Context Linear System Identification
Oğuz Kaan Yüksel
Mathieu Even
Nicolas Flammarion
26
0
0
08 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
29
0
0
02 Oct 2024
Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD
Jie Hu
Yi-Ting Ma
Do Young Eun
FedML
27
0
0
26 Sep 2024
The Entrapment Problem in Random Walk Decentralized Learning
Zonghong Liu
S. E. Rouayheb
Matthew Dwyer
21
1
0
30 Jul 2024
Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data
Xuxing Chen
Abhishek Roy
Yifan Hu
Krishnakumar Balasubramanian
43
1
0
29 May 2024
Beyond Noise: Privacy-Preserving Decentralized Learning with Virtual Nodes
Sayan Biswas
Mathieu Even
Anne-Marie Kermarrec
Laurent Massoulie
Rafael Pires
Rishi Sharma
M. Vos
46
3
0
15 Apr 2024
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling
Arman Adibi
Nicolò Dal Fabbro
Luca Schenato
Sanjeev R. Kulkarni
H. Vincent Poor
George J. Pappas
Hamed Hassani
A. Mitra
35
8
0
19 Feb 2024
Differentially Private Decentralized Learning with Random Walks
Edwige Cyffers
A. Bellet
Jalaj Upadhyay
FedML
36
2
0
12 Feb 2024
Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks
Jie Hu
Vishwaraj Doshi
Do Young Eun
50
2
0
18 Jan 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
38
4
0
17 Jan 2024
Stochastic optimization with arbitrary recurrent data sampling
William G. Powell
Hanbaek Lyu
37
0
0
15 Jan 2024
Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization
Mathieu Even
Anastasia Koloskova
Laurent Massoulié
FedML
43
13
0
01 Nov 2023
On Convergence of Incremental Gradient for Non-Convex Smooth Functions
Anastasia Koloskova
N. Doikov
Sebastian U. Stich
Martin Jaggi
36
2
0
30 May 2023
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
46
14
0
25 May 2023
Self-Repellent Random Walks on General Graphs -- Achieving Minimal Sampling Variance via Nonlinear Markov Chains
Vishwaraj Doshi
Jie Hu
Do Young Eun
27
4
0
08 May 2023
Streaming PCA for Markovian Data
Syamantak Kumar
Purnamrita Sarkar
50
6
0
03 May 2023
FLEX: an Adaptive Exploration Algorithm for Nonlinear Systems
Matthieu Blanke
Marc Lelarge
31
4
0
26 Apr 2023
Adapting to Mixing Time in Stochastic Optimization with Markovian Data
Ron Dorfman
Kfir Y. Levy
37
28
0
09 Feb 2022
Asynchronous speedup in decentralized optimization
Mathieu Even
Hadrien Hendrikx
Laurent Massoulie
26
4
0
07 Jun 2021
1