Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.13259
Cited By
Can we avoid Double Descent in Deep Neural Networks?
26 February 2023
Victor Quétu
Enzo Tartaglione
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can we avoid Double Descent in Deep Neural Networks?"
18 / 18 papers shown
Title
Multiple Descent in the Multiple Random Feature Model
Xuran Meng
Jianfeng Yao
Yuan Cao
54
7
0
21 Aug 2022
To update or not to update? Neurons at equilibrium in deep models
Andrea Bragagnolo
Enzo Tartaglione
Marco Grangetto
48
10
0
19 Jul 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
109
27
0
17 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
50
11
0
03 Jun 2022
The rise of the lottery heroes: why zero-shot pruning is hard
Enzo Tartaglione
43
6
0
24 Feb 2022
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
324
21,175
0
25 Mar 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
52
50
0
16 Dec 2020
Optimal Regularization Can Mitigate Double Descent
Preetum Nakkiran
Prayaag Venkat
Sham Kakade
Tengyu Ma
67
130
0
04 Mar 2020
Multi-task self-supervised learning for Robust Speech Recognition
Mirco Ravanelli
Jianyuan Zhong
Santiago Pascual
P. Swietojanski
João Monteiro
J. Trmal
Yoshua Bengio
SSL
219
289
0
25 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
105
925
0
04 Dec 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
47
204
0
21 Mar 2019
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
103
755
0
25 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
A jamming transition from under- to over-parametrization affects loss landscape and generalization
S. Spigler
Mario Geiger
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Matthieu Wyart
51
152
0
22 Oct 2018
The jamming transition as a paradigm to understand the loss landscape of deep neural networks
Mario Geiger
S. Spigler
Stéphane dÁscoli
Levent Sagun
Marco Baity-Jesi
Giulio Biroli
Matthieu Wyart
46
141
0
25 Sep 2018
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
58
429
0
07 Jun 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
170
3,433
0
09 Mar 2018
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
247
6,628
0
08 Jun 2015
1